Extracting Symbolic Models of Collective Behaviors with Graph Neural Networks and Macro-Micro Evolution

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2022)

Abstract

Collective behaviors are typically hard to model. The scale of the swarm, the large number of interactions, and the richness and complexity of the behaviors are factors that make it difficult to distill a collective behavior into simple symbolic expressions. In this paper, we propose a novel approach to symbolic regression designed to facilitate such modeling. Using raw and post-processed data as an input, our approach produces viable symbolic expressions that closely model the target behavior. Our approach is composed of two phases. In the first, a graph neural network (GNN) is trained to extract an approximation of the target behavior. In the second phase, the GNN is used to produce data for a nested evolutionary algorithm called macro-micro evolution (MME). The macro layer of this algorithm selects candidate symbolic expressions, while the micro layer tunes its parameters. Preliminary experimental evaluation shows that our approach outperforms competing solutions for symbolic regression, making it possible to extract compact expressions for complex swarm behaviors.

J. Smith—Independent Researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 64.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 80.24
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Birattari, M., Ligot, A., Francesca, G.: AutoMoDe: a modular approach to the automatic off-line design and fine-tuning of control software for robot swarms. In: Pillay, N., Qu, R. (eds.) Automated Design of Machine Learning and Search Algorithms. NCS, pp. 73–90. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72069-8_5

    Chapter  Google Scholar 

  2. Brown, D.S., Turner, R., Hennigh, O., Loscalzo, S.: Discovery and exploration of novel swarm behaviors given limited robot capabilities. In: Groß, R., et al. (eds.) Distributed Autonomous Robotic Systems. SPAR, vol. 6, pp. 447–460. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73008-0_31

    Chapter  Google Scholar 

  3. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton Studies in Complexity. Princeton (2003)

    Google Scholar 

  4. Chen, Q., Zhang, M., Xue, B.: Feature selection to improve generalization of genetic programming for high-dimensional symbolic regression. IEEE Trans. Evol. Comput. 21(5), 792–806 (2017). https://doi.org/10.1109/tevc.2017.2683489

    Article  Google Scholar 

  5. Cranmer, M.: PySR: fast & parallelized symbolic regression in Python/Julia (2020). https://doi.org/10.5281/zenodo.4041459

  6. Cranmer, M.D., et al.: Discovering symbolic models from deep learning with inductive biases. CoRR abs/2006.11287 (2020). https://arxiv.org/abs/2006.11287

  7. Ferrante, E., Duéñez-Guzmán, E., Turgut, A.E., Wenseleers, T.: GESwarm: grammatical evolution for the automatic synthesis of collective behaviors in swarm robotics. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO 2013, pp. 17–24. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2463372.2463385

  8. Francesca, G., et al.: AutoMoDe-chocolate: automatic design of control software for robot swarms. Swarm Intell. 9(2), 125–152 (2015). https://doi.org/10.1007/s11721-015-0107-9

    Article  Google Scholar 

  9. Huang, Z., Zhong, J., Feng, L., Mei, Y., Cai, W.: A fast parallel genetic programming framework with adaptively weighted primitives for symbolic regression. Soft. Comput. 24(10), 7523–7539 (2019). https://doi.org/10.1007/s00500-019-04379-4

    Article  Google Scholar 

  10. Kaufmann, R., Gupta, P., Taylor, J.: An active inference model of collective intelligence. Entropy 23(7) (2021). https://doi.org/10.3390/e23070830, https://www.mdpi.com/1099-4300/23/7/830

  11. Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control architecture in the automatic modular design of robot swarms. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 30–43. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_3

    Chapter  Google Scholar 

  12. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016 (2016). https://doi.org/10.1145/2908812.2908898

  13. Li, Q., Gama, F., Ribeiro, A., Prorok, A.: Graph neural networks for decentralized multi-robot path planning. CoRR abs/1912.06095 (2019). http://arxiv.org/abs/1912.06095

  14. Motta, F.A., Freitas, J.M.D., Souza, F.R.D., Bernardino, H.S., Oliveira, I.L.D., Barbosa, H.J.: A hybrid grammar-based genetic programming for symbolic regression problems. In: 2018 IEEE Congress on Evolutionary Computation (CEC) (2018). https://doi.org/10.1109/cec.2018.8477826

  15. Neupane, A., Goodrich, M.: Learning swarm behaviors using grammatical evolution and behavior trees. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, pp. 513–520. International Joint Conferences on Artificial Intelligence Organization, Macao (2019). https://doi.org/10.24963/ijcai.2019/73

  16. Orzechowski, P., La Cava, W., Moore, J.H.: Where are we now? In: Proceedings of the Genetic and Evolutionary Computation Conference (2018). https://doi.org/10.1145/3205455.3205539, http://dx.doi.org/10.1145/3205455.3205539

  17. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: SIGGRAPH 1987: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 25–34 (1987). https://doi.org/10.1145/37401.37406

  18. Ried, K., Müller, T., Briegel, H.J.: Modelling collective motion based on the principle of agency: General framework and the case of marching locusts. PLOS One 14(2), 1–21 (2019). https://doi.org/10.1371/journal.pone.0212044

    Article  Google Scholar 

  19. Smit, B.: Phase diagrams of Lennard-Jones fluids. J. Chem. Phys. 96(11), 8639–8640 (1992). https://doi.org/10.1063/1.462271

    Article  Google Scholar 

  20. Tolstaya, E., Gama, F., Paulos, J., Pappas, G., Kumar, V., Ribeiro, A.: Learning decentralized controllers for robot swarms with graph neural networks. In: Kaelbling, L.P., Kragic, D., Sugiura, K. (eds.) Proceedings of the Conference on Robot Learning. Proceedings of Machine Learning Research, 30 October–01 November 2020, vol. 100, pp. 671–682. PMLR (2020). https://proceedings.mlr.press/v100/tolstaya20a.html

  21. Udrescu, S.M., Tegmark, M.: AI Feynman: a physics-inspired method for symbolic regression. Sci. Adv. 6(16), eaay2631 (2020). https://doi.org/10.1126/sciadv.aay2631, https://www.science.org/doi/abs/10.1126/sciadv.aay2631

  22. Ward, C.R., Gobet, F., Kendall, G.: Evolving collective behavior in an artificial ecology. Artif. Life 7(2), 191–209 (2001). https://doi.org/10.1162/106454601753139005

    Article  Google Scholar 

  23. White, T., Salehi-Abari, A.: A swarm-based crossover operator for genetic programming. Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation - GECCO 2008 (2008). https://doi.org/10.1145/1389095.1389356

  24. Zhong, J., Feng, L., Cai, W., Ong, Y.: Multifactorial genetic programming for symbolic regression problems. IEEE Trans. Syst. Man Cybern. Syst. 50, 4492–4505 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by a DCRG grant from MathWorks, Inc. Results in this paper were obtained in part using a high-performance computing system acquired through NSF MRI grant DMS-1337943 to WPI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Powers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Powers, S., Smith, J., Pinciroli, C. (2022). Extracting Symbolic Models of Collective Behaviors with Graph Neural Networks and Macro-Micro Evolution. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20176-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20175-2

  • Online ISBN: 978-3-031-20176-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation