Granular Soil Relationship Between Angle of Internal Friction and Uniformity Coefficient

  • Conference paper
  • First Online:
5th International Conference on New Developments in Soil Mechanics and Geotechnical Engineering (ZM 2022)

Abstract

The strength characteristics of the sand and gravel are influenced by the size of the grains, their distribution and packaging. The theoretical approach states that the sand angle of internal friction decreases if the uniformity coefficient increases. There are insufficient data for gravel correlation between the uniformity coefficient and the angle of internal friction. Consolidated drained triaxial compression tests (CD) were conducted to determine the strength parameters of remolded sand and gravel samples. These samples were classified as sands and gravels. The optimal water content and density were determined by standard Proctor compaction test and used for these samples. Consolidated drained triaxial compression test gives more reliable data that idealize the soil behavior in the real situation. Three different confining pressures of 20, 50 and 70 kPa were applied to restore horizontal stresses for the soil specimens imitating embankment behavior affected with traffic load. The results indicate that the sand angle of internal friction decreases if the uniformity coefficient is increased. The gravel angle of internal friction does not correlate with the uniformity coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afrazi M, Yazdani M (2021) Determination of the effect of soil particle size distribution on the shear behavior of sand. J Adv Eng Computation 5(2):125–134

    Article  Google Scholar 

  2. Deng Y, Yilmaz Y, Gokce A, Chang CS (2021) Influence of particle size on the drained shear behavior of a dense fluvial sand. Acta Geotech 16:2071–2088

    Article  Google Scholar 

  3. Dirgėlienė N, Skuodis Š, Vasys E (2022) The behaviour of stress variation in sandy soil. Open Geosci. 14(1):13–23

    Article  Google Scholar 

  4. Heyman J (1972) Coulomb’s memoir on statics. Cambridge University Press, London

    MATH  Google Scholar 

  5. Islam M, Badhon FF, Abedin MZ (2017) Relation between effective particle size and angle of internal friction of cohesionless soil. In: Proceedings of international conference on planning, architecture and civil engineering

    Google Scholar 

  6. Islam M, Siddika A, Hossain B, Rahman AN, Asad MA (2011) Effect of particle size on the shear strength behavior of sands. Australian Geomechanics. 46(3):85–95

    Google Scholar 

  7. Kara EM, Meghachou M, Aboubekr N (2013) Contribution of particles size ranges to sand friction. Eng, Technol & Appl Sci Res 3(4):497–501

    Article  Google Scholar 

  8. Kirkpatric WM (1965) Effects of grain size and grading on the shearing behaviour of granular materials. In: Proceedings of the sixth International conference on soil mechanics and foundation engineering, vol 1. Canada, pp. 273–277

    Google Scholar 

  9. LST 1331:2015 (2015) Gruntai skirti keliams ir jų statiniams. Klasifikacija. Vilnius, Lietuvos standartizacijos departamentas

    Google Scholar 

  10. LST EN 13286-2:2015 (2015) Unbound and hydraulically bound mixtures—Part 2: test methods for laboratory reference density and water content— Proctor compaction. Vilnius, Lietuvos standartizacijos departamentas

    Google Scholar 

  11. LST EN ISO 17892–4:2017 (2017) Geotechnical investigation and testing—Laboratory testing of soil—part 4: Determination of particle size distribution. Vilnius, Lietuvos standartizacijos departamentas

    Google Scholar 

  12. LST EN ISO 17892–9:2017 (2017) Geotechnical investigation and testing—Laboratory testing of soil—part 9: Consolidated triaxial compression tests on water saturated soils. Vilnius, Lietuvos standartizacijos departamentas

    Google Scholar 

  13. Mitchell JK, Houston WN, Scott RF, Costes NC, Carrier WD, Bromwell LG (1972) Mechanical properties of lunar soil: Density, porosity, cohesion and angle of internal friction. In: Proceedings of the lunar science conference, pp. 3235–3253

    Google Scholar 

  14. Rasti A, Adarmanabadi HR, Pineda M, Reinikainen J (2021) Evaluating the effect of soil particle characterization on internal friction angle. Am J Eng Appl Sci 14(1):129–138

    Article  Google Scholar 

  15. Sharma V, Kumar A, Priyadarshee A, Chhotu AK (2019) Prediction of shear strength parameter from the particle size distribution and relative density of granular soil. In: Agnihotri A, Reddy K, Bansal A (eds) Environmental geotechnology. Lecture notes in civil engineering, vol 31. Springer, Singapore

    Google Scholar 

  16. Vangla P, Latha GM (2015) Influence of particle size on the friction and interfacial shear strength of sands of similar morphology. Int J Geosynth Ground Eng 1(6)

    Google Scholar 

  17. Viggiani G, Küntz M, Desrues JJM (2001) An experimental investigation of the relationships between grain size distribution and shear banding in sand. In: Continuous and discontinuous modelling of cohesive-frictional materials. Lecture notes in physics, vol 568. Springer, Berlin, pp 111–127

    Google Scholar 

  18. Wang JJ, Zhang HP, Tang SC, Liang Y (2013) Effects of particle size distribution on shear strength of accumulation soil. J Geotech Geoenvironmental Engi-Neering 139(11):1994–1997

    Article  Google Scholar 

  19. Whalley WB (1979) Discussion on ‘Effect of sand grain shape on interparticle friction’”. Geotechnics 29(3):341–350

    Google Scholar 

  20. Yu X, Ji S, Janoyan KD (2006) Direct shear testing of rockfill material in soil and rock behavior and modeling. Geotechnical Special Publication, American Society of Civil Engineers, pp 149–155

    Book  Google Scholar 

  21. Zakarka M (2022) Analysis of the traffic load—induced stresses of embankment. Mokslas—Lietuvos ateitis 14: 1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mindaugas Zakarka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zakarka, M., Skuodis, Š. (2023). Granular Soil Relationship Between Angle of Internal Friction and Uniformity Coefficient. In: Atalar, C., Çinicioğlu, F. (eds) 5th International Conference on New Developments in Soil Mechanics and Geotechnical Engineering. ZM 2022. Lecture Notes in Civil Engineering, vol 305. Springer, Cham. https://doi.org/10.1007/978-3-031-20172-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20172-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20171-4

  • Online ISBN: 978-3-031-20172-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation