Concurrent Subsidiary Supervision for Unsupervised Source-Free Domain Adaptation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

The prime challenge in unsupervised domain adaptation (DA) is to mitigate the domain shift between the source and target domains. Prior DA works show that pretext tasks could be used to mitigate this domain shift by learning domain invariant representations. However, in practice, we find that most existing pretext tasks are ineffective against other established techniques. Thus, we theoretically analyze how and when a subsidiary pretext task could be leveraged to assist the goal task of a given DA problem and develop objective subsidiary task suitability criteria. Based on this criteria, we devise a novel process of sticker intervention and cast sticker classification as a supervised subsidiary DA problem concurrent to the goal task unsupervised DA. Our approach not only improves goal task adaptation performance, but also facilitates privacy-oriented source-free DA i.e. without concurrent source-target access. Experiments on the standard Office-31, Office-Home, DomainNet, and VisDA benchmarks demonstrate our superiority for both single-source and multi-source source-free DA. Our approach also complements existing non-source-free works, achieving leading performance.

J. N. Kundu, S. Bhambri and A. Kulkarni—Equal contribution | Webpage: https://sites.google.com/view/sticker-sfda.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, S., Kundu, J.N., Babu, R.V., Chakraborty, A.: WAMDA: weighted alignment of sources for multi-source domain adaptation. In: BMVC (2020)

    Google Scholar 

  2. Ahmed, S.M., Raychaudhuri, D.S., Paul, S., Oymak, S., Roy-Chowdhury, A.K.: Unsupervised multi-source domain adaptation without access to source data. In: CVPR (2021)

    Google Scholar 

  3. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: NeurIPS (2006)

    Google Scholar 

  4. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: CVPR (2017)

    Google Scholar 

  5. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. In: CVPR (2019)

    Google Scholar 

  6. Chen, Y.H., Chen, W.Y., Chen, Y.T., Tsai, B.C., Frank Wang, Y.C., Sun, M.: No more discrimination: cross city adaptation of road scene segmenters. In: ICCV (2017)

    Google Scholar 

  7. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: ICCV (2015)

    Google Scholar 

  8. Dong, J., Fang, Z., Liu, A., Sun, G., Liu, T.: Confident anchor-induced multi-source free domain adaptation. In: NeurIPS (2021)

    Google Scholar 

  9. Feng, Z., Xu, C., Tao, D.: Self-supervised representation learning from multi-domain data. In: ICCV (2019)

    Google Scholar 

  10. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2130 (2016)

    MathSciNet  Google Scholar 

  11. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: ICCV (2015)

    Google Scholar 

  12. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-classification networks for unsupervised domain adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_36

    Chapter  Google Scholar 

  13. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  15. Jiaolong, X., Liang, X., López, A.M.: Self-supervised domain adaptation for computer vision tasks. IEEE Access 7, 156694–156706 (2019)

    Article  Google Scholar 

  16. Kim, D., Saito, K., Oh, T.H., Plummer, B.A., Sclaroff, S., Saenko, K.: CDS: cross-domain self-supervised pre-training. In: ICCV (2021)

    Google Scholar 

  17. Kundu, J.N., et al.: Balancing discriminability and transferability for source-free domain adaptation. In: ICML (2022)

    Google Scholar 

  18. Kundu, J.N., Kulkarni, A., Singh, A., Jampani, V., Babu, R.V.: Generalize then adapt: source-free domain adaptive semantic segmentation. In: ICCV (2021)

    Google Scholar 

  19. Kundu, J.N., Venkat, N., M V, R., Babu, R.V.: Universal source-free domain adaptation. In: CVPR (2020)

    Google Scholar 

  20. Kundu, J.N., Venkat, N., Revanur, A., Rahul, M.V., Babu, R.V.: Towards inheritable models for open-set domain adaptation. In: CVPR (2020)

    Google Scholar 

  21. Kundu, J.N., Venkatesh, R.M., Venkat, N., Revanur, A., Babu, R.V.: Class-incremental domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 53–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_4

    Chapter  Google Scholar 

  22. Larsson, G., Maire, M., Shakhnarovich, G.: Colorization as a proxy task for visual understanding. In: CVPR (2017)

    Google Scholar 

  23. Li, R., Jiao, Q., Cao, W., Wong, H.S., Wu, S.: Model adaptation: unsupervised domain adaptation without source data. In: CVPR (2020)

    Google Scholar 

  24. Li, S., **e, M., Lv, F., Liu, C.H., Liang, J., Qin, C., Li, W.: Semantic concentration for domain adaptation. In: ICCV (2021)

    Google Scholar 

  25. Li, Y., Yuan, L., Chen, Y., Wang, P., Vasconcelos, N.: Dynamic transfer for multi-source domain adaptation. In: CVPR (2021)

    Google Scholar 

  26. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. In: ICML (2020)

    Google Scholar 

  27. Liang, J., Hu, D., Wang, Y., He, R., Feng, J.: Source data-absent unsupervised domain adaptation through hypothesis transfer and labeling transfer. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  28. Liu, Y., Zhang, W., Wang, J.: Source-free domain adaptation for semantic segmentation. In: CVPR (2021)

    Google Scholar 

  29. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: ICML (2015)

    Google Scholar 

  30. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: NeurIPS (2017)

    Google Scholar 

  31. Mishra, S., Saenko, K., Saligrama, V.: Surprisingly simple semi-supervised domain adaptation with pretraining and consistency. In: BMVC (2021)

    Google Scholar 

  32. Mitsuzumi, Y., Irie, G., Ikami, D., Shibata, T.: Generalized domain adaptation. In: CVPR (2021)

    Google Scholar 

  33. Na, J., Jung, H., Chang, H.J., Hwang, W.: FixBi: bridging domain spaces for unsupervised domain adaptation. In: CVPR (2021)

    Google Scholar 

  34. Nguyen, V.A., Nguyen, T., Le, T., Tran, Q.H., Phung, D.: STEM: an approach to multi-source domain adaptation with guarantees. In: ICCV (2021)

    Google Scholar 

  35. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  36. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. ar**v preprint ar**v:1807.03748 (2018)

  37. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.V.: Cats and dogs. In: CVPR (2012)

    Google Scholar 

  38. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016)

    Google Scholar 

  39. Peng, X., Bai, Q., **a, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: ICCV (2019)

    Google Scholar 

  40. Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., Saenko, K.: VisDA: the visual domain adaptation challenge. ar**v preprint ar**v:1710.06924 (2017)

  41. Prabhu, V., Khare, S., Kartik, D., Hoffman, J.: SENTRY: selective entropy optimization via committee consistency for unsupervised domain adaptation. In: ICCV (2021)

    Google Scholar 

  42. Qiu, Z., Zhang, Y., Lin, H., Niu, S., Liu, Y., Du, Q., Tan, M.: Source-free domain adaptation via avatar prototype generation and adaptation. In: IJCAI (2021)

    Google Scholar 

  43. Ren, Z., Lee, Y.J.: Cross-domain self-supervised multi-task feature learning using synthetic imagery. In: CVPR (2018)

    Google Scholar 

  44. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  45. Saito, K., Kim, D., Sclaroff, S., Saenko, K.: Universal domain adaptation through self supervision. In: NeurIPS (2020)

    Google Scholar 

  46. Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by backpropagation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 156–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_10

    Chapter  Google Scholar 

  47. Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., Madry, A.: Do adversarially robust ImageNet models transfer better? In: NeurIPS (2020)

    Google Scholar 

  48. Scalbert, M., Vakalopoulou, M., Couzini’e-Devy, F.: Multi-source domain adaptation via supervised contrastive learning and confident consistency regularization. In: BMVC (2021)

    Google Scholar 

  49. Sivaprasad, P.T., Fleuret, F.: Uncertainty reduction for model adaptation in semantic segmentation. In: CVPR (2021)

    Google Scholar 

  50. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  51. Sun, Y., Tzeng, E., Darrell, T., Efros, A.A.: Unsupervised domain adaptation through self-supervision. ar**v preprint ar**v:1909.11825 (2019)

  52. Tang, H., Chen, K., Jia, K.: Unsupervised domain adaptation via structurally regularized deep clustering. In: CVPR (2020)

    Google Scholar 

  53. Venkat, N., Kundu, J.N., Singh, D.K., Revanur, A., Babu, R.V.: Your classifier can secretly suffice multi-source domain adaptation. In: NeurIPS (2020)

    Google Scholar 

  54. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: CVPR (2017)

    Google Scholar 

  55. Wallace, B., Hariharan, B.: Extending and analyzing self-supervised learning across domains. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 717–734. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_43

    Chapter  Google Scholar 

  56. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: CVPR (2017)

    Google Scholar 

  57. Wu, Z., **ong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)

    Google Scholar 

  58. **a, H., Zhao, H., Ding, Z.: Adaptive adversarial network for source-free domain adaptation. In: ICCV (2021)

    Google Scholar 

  59. Yang, S., Wang, Y., van de Weijer, J., Herranz, L., Jui, S.: Exploiting the intrinsic neighborhood structure for source-free domain adaptation. In: NeurIPS (2021)

    Google Scholar 

  60. Yang, S., Wang, Y., van de Weijer, J., Herranz, L., Jui, S.: Generalized source-free domain adaptation. In: ICCV (2021)

    Google Scholar 

  61. You, K., Long, M., Cao, Z., Wang, J., Jordan, M.I.: Universal domain adaptation. In: CVPR (2019)

    Google Scholar 

  62. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  63. Zhang, R., Isola, P., Efros, A.A.: Split-brain autoencoders: unsupervised learning by cross-channel prediction. In: CVPR (2017)

    Google Scholar 

  64. Zhao, H., Combes, R.T.D., Zhang, K., Gordon, G.: On learning invariant representations for domain adaptation. In: ICML (2019)

    Google Scholar 

Download references

Acknowledgments

This work was supported by MeitY (Ministry of Electronics and Information Technology) project (No. 4(16)2019-ITEA), Govt. of India and a research grant by Google.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jogendra Nath Kundu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1937 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kundu, J.N., Bhambri, S., Kulkarni, A., Sarkar, H., Jampani, V., Babu, R.V. (2022). Concurrent Subsidiary Supervision for Unsupervised Source-Free Domain Adaptation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13690. Springer, Cham. https://doi.org/10.1007/978-3-031-20056-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20056-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20055-7

  • Online ISBN: 978-3-031-20056-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation