DistPro: Searching a Fast Knowledge Distillation Process via Meta Optimization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13694))

Included in the following conference series:

Abstract

Recent Knowledge distillation (KD) studies show that different manually designed schemes impact the learned results significantly. Yet, in KD, automatically searching an optimal distillation scheme has not yet been well explored. In this paper, we propose DistPro, a novel framework which searches for an optimal KD process via differentiable meta-learning. Specifically, given a pair of student and teacher networks, DistPro first sets up a rich set of KD connections from the transmitting layers of the teacher to the receiving layers of the student, and in the meanwhile, various transforms are also proposed for comparing feature maps along their pathways for distillation. Then, each combination of connection and transform (pathway) is associated with a stochastic weighting process which indicates its importance at every step during the distillation. At the searching stage, the process can be effectively learned through our proposed bi-level meta-optimization strategy. At the distillation stage, DistPro adopts the learned processes for knowledge distillation, which significantly improves the student accuracy especially when faster training is required. Lastly, we find the learned processes can be generalized between similar tasks and networks. In our experiments, DistPro produces state-of-the-art (SoTA) accuracy under varying number of learning epochs on popular datasets, i.e. CIFAR100 and ImageNet, which demonstrates the effectiveness of our framework. Codes are available at https://github.com/xdeng7/DistPro.

X. Deng and D. Sun—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: Advances in Neural Information Processing Systems, pp. 3981–3989 (2016)

    Google Scholar 

  2. Buciluă, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 535–541 (2006)

    Google Scholar 

  3. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  4. Chen, P., Liu, S., Zhao, H., Jia, J.: Distilling knowledge via knowledge review. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5008–5017 (2021)

    Google Scholar 

  5. Chen, Z., Liu, B.: Lifelong machine learning. Synth. Lect. Artif. Intell. Mach. Learn. 12(3), 1–207 (2018)

    Google Scholar 

  6. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale Hierarchical Image Database. In: CVPR09 (2009)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. ar**v preprint ar**v:1810.04805 (2018)

  9. Dosovitskiy, A., et al.: An image is worth 16 x 16 words: transformers for image recognition at scale. ar**v preprint ar**v:2010.11929 (2020)

  10. Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M.: Bilevel programming for hyperparameter optimization and meta-learning. In: International Conference on Machine Learning, pp. 1568–1577. PMLR (2018)

    Google Scholar 

  11. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J. Comput. Vision 129(6), 1789–1819 (2021)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Heo, B., Kim, J., Yun, S., Park, H., Kwak, N., Choi, J.Y.: A comprehensive overhaul of feature distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1921–1930 (2019)

    Google Scholar 

  14. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015)

    Google Scholar 

  15. Hoffer, E., Hubara, I., Soudry, D.: Train longer, generalize better: closing the generalization gap in large batch training of neural networks. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  16. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. ar**v preprint ar**v:1704.04861 (2017)

  17. Huang, Z., Wang, N.: Like what you like: knowledge distill via neuron selectivity transfer. ar**v preprint ar**v:1707.01219 (2017)

  18. Jang, Y., Lee, H., Hwang, S.J., Shin, J.: Learning what and where to transfer. In: International Conference on Machine Learning, pp. 3030–3039. PMLR (2019)

    Google Scholar 

  19. Ji, M., Heo, B., Park, S.: Show, attend and distill: Knowledge distillation via attention-based feature matching. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 7945–7952 (2021)

    Google Scholar 

  20. Kimura, A., Ghahramani, Z., Takeuchi, K., Iwata, T., Ueda, N.: Few-shot learning of neural networks from scratch by pseudo example optimization. ar**v preprint ar**v:1802.03039 (2018)

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  22. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  23. Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7), 3 (2015)

    Google Scholar 

  24. Lee, S., Song, B.C.: Graph-based knowledge distillation by multi-head attention network. ar**v preprint ar**v:1907.02226 (2019)

  25. Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. In: International Conference on Learning Representations (2019)

    Google Scholar 

  26. Liu, Y., Chen, K., Liu, C., Qin, Z., Luo, Z., Wang, J.: Structured knowledge distillation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2604–2613 (2019)

    Google Scholar 

  27. Liu, Y., et al.: Search to distill: Pearls are everywhere but not the eyes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7539–7548 (2020)

    Google Scholar 

  28. Lyu, L., Chen, C.H.: Differentially private knowledge distillation for mobile analytics. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1809–1812 (2020)

    Google Scholar 

  29. Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4796–4803. IEEE (2018)

    Google Scholar 

  30. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 116–131 (2018)

    Google Scholar 

  31. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  32. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  33. Oord, A., et al.: Parallel wavenet: fast high-fidelity speech synthesis. In: International Conference on Machine Learning, pp. 3918–3926. PMLR (2018)

    Google Scholar 

  34. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. In: International Conference on Machine Learning, pp. 4334–4343. PMLR (2018)

    Google Scholar 

  35. Romero, A., Ballas, N., Kahou, S., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. CoRR abs/1412.6550 (2015)

    Google Scholar 

  36. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  37. Shang, Y., Duan, B., Zong, Z., Nie, L., Yan, Y.: Lipschitz continuity guided knowledge distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10675–10684 (2021)

    Google Scholar 

  38. Shen, Z., **ng, E.: A fast knowledge distillation framework for visual recognition. ar**v preprint ar**v:2112.01528 (2021)

  39. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. In: International Conference on Learning Representations (2020)

    Google Scholar 

  40. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  41. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1365–1374 (2019)

    Google Scholar 

  42. Urner, R., Shalev-Shwartz, S., Ben-David, S.: Access to unlabeled data can speed up prediction time. In: ICML (2011)

    Google Scholar 

  43. Wang, X., Zhang, R., Sun, Y., Qi, J.: Kdgan: knowledge distillation with generative adversarial networks. In: NeurIPS, pp. 783–794 (2018)

    Google Scholar 

  44. Wang, Y., Zhou, W., Jiang, T., Bai, X., Xu, Y.: Intra-class feature variation distillation for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 346–362. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_21

    Chapter  Google Scholar 

  45. **ang, L., Ding, G., Han, J.: Learning from multiple experts: self-paced knowledge distillation for long-tailed classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 247–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_15

    Chapter  Google Scholar 

  46. **e, S., Zheng, H., Liu, C., Lin, L.: SNAS: stochastic neural architecture search. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=rylqooRqK7

  47. Xu, G., Liu, Z., Li, X., Loy, C.C.: Knowledge distillation meets self-supervision. In: European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  48. Yao, L., Pi, R., Xu, H., Zhang, W., Li, Z., Zhang, T.: Joint-detnas: upgrade your detector with NAS, pruning and dynamic distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10175–10184 (2021)

    Google Scholar 

  49. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4133–4141 (2017)

    Google Scholar 

  50. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. ar**v preprint ar**v:1612.03928 (2016)

  51. Zagoruyko, S., Komodakis, N.: Wide residual networks. ar**v preprint ar**v:1605.07146 (2016)

  52. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  53. Zhu, Y., Wang, Y.: Student customized knowledge distillation: bridging the gap between student and teacher. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5057–5066 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqing Deng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4557 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, X., Sun, D., Newsam, S., Wang, P. (2022). DistPro: Searching a Fast Knowledge Distillation Process via Meta Optimization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13694. Springer, Cham. https://doi.org/10.1007/978-3-031-19830-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19830-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19829-8

  • Online ISBN: 978-3-031-19830-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation