A Broad Study of Pre-training for Domain Generalization and Adaptation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13693))

Included in the following conference series:

Abstract

Deep models must learn robust and transferable representations in order to perform well on new domains. While domain transfer methods (e.g., domain adaptation, domain generalization) have been proposed to learn transferable representations across domains, they are typically applied to ResNet backbones pre-trained on ImageNet. Thus, existing works pay little attention to the effects of pre-training on domain transfer tasks. In this paper, we provide a broad study and in-depth analysis of pre-training for domain adaptation and generalization, namely: network architectures, size, pre-training loss, and datasets. We observe that simply using a state-of-the-art backbone outperforms existing state-of-the-art domain adaptation baselines and set new baselines on Office-Home and DomainNet improving by 10.7% and 5.5%. We hope that this work can provide more insights for future domain transfer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 114.39
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Y., Mei, J., Yuille, A.L., **e, C.: Are transformers more robust than CNNs? In: Advances in Neural Information Processing Systems (NeurIPS), vol. 34 (2021)

    Google Scholar 

  2. Bao, H., Dong, L., Piao, S., Wei, F.: BEit: BERT pre-training of image transformers. In: International Conference on Learning Representations (2022). www.openreview.net/forum?id=p-BhZSz59o4

  3. Bashkirova, D., et al.: Visda-2021 competition universal domain adaptation to improve performance on out-of-distribution data. ar**v preprint ar**v:2107.11011 (2021)

  4. Beery, S., Cole, E., Gjoka, A.: The iwildcam 2020 competition dataset. ar**v preprint ar**v:2004.10340 (2020)

  5. Bhushan Damodaran, B., Kellenberger, B., Flamary, R., Tuia, D., Courty, N.: Deepjdot: deep joint distribution optimal transport for unsupervised domain adaptation. In: European Conference on Computer Vision (ECCV), pp. 447–463 (2018)

    Google Scholar 

  6. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 9912–9924 (2020)

    Google Scholar 

  7. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: IEEE International Conference on Computer Vision (ICCV), pp. 9650–9660 (2021)

    Google Scholar 

  8. Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12m: pushing web-scale image-text pre-training to recognize long-tail visual concepts. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3558–3568 (2021)

    Google Scholar 

  9. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning (ICML), pp. 1597–1607. PMLR (2020)

    Google Scholar 

  10. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (ICLR) (2021). www.openreview.net/forum?id=YicbFdNTTy

  11. Dosovitskiy, A., Fischer, P., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with exemplar convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1734–1747 (2015)

    Article  Google Scholar 

  12. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  13. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. ar**v preprint ar**v:1803.07728 (2018)

  14. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. ar**v preprint ar**v:1412.6572 (2014)

  15. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. In: International Conference on Learning Representations (2021). www.openreview.net/forum?id=lQdXeXDoWtI

  16. He, K., Fan, H., Wu, Y., **e, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9729–9738 (2020)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  18. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: International Conference on Learning Representations (2019). www.openreview.net/forum?id=HJz6tiCqYm

  19. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. ar**v preprint ar**v:1503.02531 (2015)

  20. Hoffman, J., Tzeng, E., Donahue, J., Jia, Y., Saenko, K., Darrell, T.: One-shot adaptation of supervised deep convolutional models. In: International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  21. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141 (2018)

    Google Scholar 

  22. Huang, J., Dong, Q., Gong, S., Zhu, X.: Unsupervised deep learning by neighbourhood discovery. ar**v preprint ar**v:1904.11567 (2019)

  23. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning (ICML), pp. 4904–4916. PMLR (2021)

    Google Scholar 

  24. **, Y., Wang, X., Long, M., Wang, J.: Minimum class confusion for versatile domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 464–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_28

  25. Kim, D., Saito, K., Oh, T.H., Plummer, B.A., Sclaroff, S., Saenko, K.: CDS: Cross-domain self-supervised pre-training. In: IEEE International Conference on Computer Vision (ICCV), pp. 9123–9132 (2021)

    Google Scholar 

  26. Koh, P.W., et al.: Wilds: A benchmark of in-the-wild distribution shifts. In: International Conference on Machine Learning (ICML), pp. 5637–5664. PMLR (2021)

    Google Scholar 

  27. Kornblith, S., Shlens, J., Le, Q.V.: Do better ImageNet models transfer better? In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2661–2671 (2019)

    Google Scholar 

  28. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)

    Google Scholar 

  29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), vol. 25 (2012)

    Google Scholar 

  30. Li, J., Selvaraju, R., Gotmare, A., Joty, S., **ong, C., Hoi, S.C.H.: Align before fuse: vision and language representation learning with momentum distillation. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 34 (2021)

    Google Scholar 

  31. Lin, T.-Y., et al.: Microsoft COCO: Common Objects in Context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  32. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: IEEE International Conference on Computer Vision (ICCV), pp. 10012–10022 (2021)

    Google Scholar 

  33. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., **e, S.: A ConvNet for the 2020s. ar**v preprint ar**v:2201.03545 (2022)

  34. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 1640–1650 (2018)

    Google Scholar 

  35. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 136–144 (2016)

    Google Scholar 

  36. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  37. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

  38. Ordonez, V., Kulkarni, G., Berg, T.: Im2text: describing images using 1 million captioned photographs. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 24 (2011)

    Google Scholar 

  39. Peng, X., Bai, Q., **a, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: IEEE International Conference on Computer Vision (ICCV), pp. 1406–1415 (2019)

    Google Scholar 

  40. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning (ICML), pp. 8748–8763. PMLR (2021)

    Google Scholar 

  41. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Google Scholar 

  42. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

  43. Sagawa, S., et al.: Extending the WILDS benchmark for unsupervised adaptation. In: International Conference on Learning Representations (2022). www.openreview.net/forum?id=z7p2V6KROOV

  44. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain adaptation via minimax entropy. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  45. Saito, K., Kim, D., Sclaroff, S., Saenko, K.: Universal domain adaptation through self supervision. ar**v preprint ar**v:2002.07953 (2020)

  46. Saito, K., Kim, D., Teterwak, P., Sclaroff, S., Darrell, T., Saenko, K.: Tune it the right way: unsupervised validation of domain adaptation via soft neighborhood density. In: IEEE International Conference on Computer Vision (ICCV), pp. 9184–9193 (2021)

    Google Scholar 

  47. Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6956–6965 (2019)

    Google Scholar 

  48. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3723–3732 (2018)

    Google Scholar 

  49. Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2556–2565 (2018)

    Google Scholar 

  50. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ar**v preprint ar**v:1409.1556 (2014)

  51. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: IEEE International Conference on Computer Vision (ICCV), pp. 843–852 (2017)

    Google Scholar 

  52. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning (ICML), pp. 6105–6114. PMLR (2019)

    Google Scholar 

  53. Tang, H., Chen, K., Jia, K.: Unsupervised domain adaptation via structurally regularized deep clustering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8725–8735 (2020)

    Google Scholar 

  54. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning (ICML), pp. 10347–10357. PMLR (2021)

    Google Scholar 

  55. Tsai, Y.H., Sohn, K., Schulter, S., Chandraker, M.: Domain adaptation for structured output via discriminative patch representations. In: IEEE International Conference on Computer Vision (ICCV), pp. 1456–1465 (2019)

    Google Scholar 

  56. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. ar**v preprint ar**v:1412.3474 (2014)

  57. Van Horn, G., et al.: The inaturalist species classification and detection dataset. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8769–8778 (2018)

    Google Scholar 

  58. Vaswani, A., et al.: Attention is all you need 30 (2017)

    Google Scholar 

  59. Venkat, N., Kundu, J.N., Singh, D., Revanur, A., et al.: Your classifier can secretly suffice multi-source domain adaptation. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 4647–4659 (2020)

    Google Scholar 

  60. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5018–5027 (2017)

    Google Scholar 

  61. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD birds-200-2011 dataset (2011)

    Google Scholar 

  62. Wang, S., Chen, X., Wang, Y., Long, M., Wang, J.: Progressive adversarial networks for fine-grained domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9213–9222 (2020)

    Google Scholar 

  63. Wu, Z., **ong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3733–3742 (2018)

    Google Scholar 

  64. **e, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10687–10698 (2020)

    Google Scholar 

  65. **e, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1492–1500 (2017)

    Google Scholar 

  66. Xu, R., Chen, Z., Zuo, W., Yan, J., Lin, L.: Deep cocktail network: multi-source unsupervised domain adaptation with category shift. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3964–3973 (2018)

    Google Scholar 

  67. Xu, R., Li, G., Yang, J., Lin, L.: Larger norm more transferable: An adaptive feature norm approach for unsupervised domain adaptation. In: IEEE International Conference on Computer Vision (ICCV), pp. 1426–1435 (2019)

    Google Scholar 

  68. You, K., Liu, Y., Wang, J., Long, M.: Logme: practical assessment of pre-trained models for transfer learning. In: International Conference on Machine Learning (ICML), pp. 12133–12143. PMLR (2021)

    Google Scholar 

  69. Zhang, Y., Liu, T., Long, M., Jordan, M.: Bridging theory and algorithm for domain adaptation. In: International Conference on Machine Learning (ICML), pp. 7404–7413. PMLR (2019)

    Google Scholar 

  70. Zhu, Y., Zhuang, F., Wang, D.: Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5989–5996 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by DARPA LwLL and NSF Award No. 1535797.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghyun Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1386 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, D., Wang, K., Sclaroff, S., Saenko, K. (2022). A Broad Study of Pre-training for Domain Generalization and Adaptation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13693. Springer, Cham. https://doi.org/10.1007/978-3-031-19827-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19827-4_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19826-7

  • Online ISBN: 978-3-031-19827-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation