Prototype-Guided Continual Adaptation for Class-Incremental Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

This paper studies a new, practical but challenging problem, called Class-Incremental Unsupervised Domain Adaptation (CI-UDA), where the labeled source domain contains all classes, but the classes in the unlabeled target domain increase sequentially. This problem is challenging due to two difficulties. First, source and target label sets are inconsistent at each time step, which makes it difficult to conduct accurate domain alignment. Second, previous target classes are unavailable in the current step, resulting in the forgetting of previous knowledge. To address this problem, we propose a novel Prototype-guided Continual Adaptation (ProCA) method, consisting of two solution strategies. 1) Label prototype identification: we identify target label prototypes by detecting shared classes with cumulative prediction probabilities of target samples. 2) Prototype-based alignment and replay: based on the identified label prototypes, we align both domains and enforce the model to retain previous knowledge. With these two strategies, ProCA is able to adapt the source model to a class-incremental unlabeled target domain effectively. Extensive experiments demonstrate the effectiveness and superiority of ProCA in resolving CI-UDA. The @scut.edu.cnsource code is available at https://github.com/Hongbin98/ProCA.git.

H. Lin , Y. Zhang and Z. Qiu—Authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, Z., Ma, L., Long, M., Wang, J.: Partial adversarial domain adaptation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 139–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_9

    Chapter  Google Scholar 

  2. Cao, Z., et al.: Learning to transfer examples for partial domain adaptation. In: CVPR, pp. 2985–2994 (2019)

    Google Scholar 

  3. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 241–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_15

    Chapter  Google Scholar 

  4. Chen, C., et al.: HOMM: Higher-order moment matching for unsupervised domain adaptation. In: AAAI, pp. 3422–3429 (2020)

    Google Scholar 

  5. Chen, S., Harandi, M., **, X., Yang, X.: Domain adaptation by joint distribution invariant projections. IEEE Trans. Image Process. 29, 8264–8277 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., et al.: Domain adaptive faster R-CNN for object detection in the wild. In: CVPR, pp. 3339–3348 (2018)

    Google Scholar 

  7. Du, Z., Li, J., Su, H., Zhu, L., Lu, K.: Cross-domain gradient discrepancy minimization for unsupervised domain adaptation. In: CVPR, pp. 3937–3946 (2021)

    Google Scholar 

  8. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML (2015)

    Google Scholar 

  9. Gong, R., et al.: DLOW: domain flow for adaptation and generalization. In: CVPR, pp. 2477–2486 (2019)

    Google Scholar 

  10. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)

    Google Scholar 

  11. He, K., et al.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  12. Hoffman, J., et al.: CYCADA: cycle-consistent adversarial domain adaptation. In: ICML (2018)

    Google Scholar 

  13. Hu, D., Liang, J., Hou, Q., Yan, H., Chen, Y.: Adversarial domain adaptation with prototype-based normalized output conditioner. IEEE Trans. Image Process. 30, 9359–9371 (2021)

    Article  Google Scholar 

  14. Hu, J., et al.: Discriminative partial domain adversarial network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 632–648. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_38

    Chapter  Google Scholar 

  15. Inoue, N., et al.: Cross-domain weakly-supervised object detection through progressive domain adaptation. In: CVPR, pp. 5001–5009 (2018)

    Google Scholar 

  16. Kang, G., et al.: Contrastive adaptation network for unsupervised domain adaptation. In: CVPR, pp. 4893–4902 (2019)

    Google Scholar 

  17. Khosla, P., et al.: Supervised contrastive learning. In: NeurIPS (2020)

    Google Scholar 

  18. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kundu, J.N., Venkatesh, R.M., Venkat, N., Revanur, A., Babu, R.V.: Class-incremental domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 53–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_4

    Chapter  Google Scholar 

  20. Lao, Q., et al.: Continuous domain adaptation with variational domain-agnostic feature replay. Ar**v (2020)

    Google Scholar 

  21. Li, C., Lee, G.H.: From synthetic to real: Unsupervised domain adaptation for animal pose estimation. In: CVPR. pp. 1482–1491 (2021)

    Google Scholar 

  22. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40, 2935–2947 (2018)

    Article  Google Scholar 

  23. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation. In: ICML (2020)

    Google Scholar 

  24. Liang, J., Wang, Y., Hu, D., He, R., Feng, J.: A balanced and uncertainty-aware approach for partial domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 123–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_8

    Chapter  Google Scholar 

  25. Liu, X., et al.: Rotate your networks: better weight consolidation and less catastrophic forgetting. In: International Conference on Pattern Recognition, pp. 2262–2268 (2018)

    Google Scholar 

  26. Melas-Kyriazi, L., Manrai, A.K.: PixMatch: unsupervised domain adaptation via pixelwise consistency training. In: CVPR, pp. 12435–12445 (2021)

    Google Scholar 

  27. Na, J., Jung, H., Chang, H.J., Hwang, W.: FixBi: bridging domain spaces for unsupervised domain adaptation. In: CVPR, pp. 1094–1103 (2021)

    Google Scholar 

  28. Niu, S., et al.: Efficient test-time model adaptation without forgetting. In: ICML (2022)

    Google Scholar 

  29. Pan, Y., et al.: Transferrable prototypical networks for unsupervised domain adaptation. In: CVPR (2019)

    Google Scholar 

  30. Panareda Busto, P., Gall, J.: Open set domain adaptation. In: ICCV, pp. 754–763 (2017)

    Google Scholar 

  31. Pei, Z., et al.: Multi-adversarial domain adaptation. In: AAAI (2018)

    Google Scholar 

  32. Qiu, Z., et al.: Source-free domain adaptation via avatar prototype generation and adaptation. In: IJCAI (2021)

    Google Scholar 

  33. Rebuffi, S.A., et al.: ICARL: incremental classifier and representation learning. In: CVPR, pp. 5533–5542 (2017)

    Google Scholar 

  34. Russakovsky, O., Deng, J., Su, H., et al.: Imagenet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  35. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  36. Saito, K., et al.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR, pp. 3723–3732 (2018)

    Google Scholar 

  37. Sankaranarayanan, S., et al.: Generate to adapt: aligning domains using generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  38. Tang, H., Chen, K., Jia, K.: Unsupervised domain adaptation via structurally regularized deep clustering. In: CVPR (2020)

    Google Scholar 

  39. Tang, S., et al.: Gradient regularized contrastive learning for continual domain adaptation. In: AAAI, pp. 2–13 (2021)

    Google Scholar 

  40. Tzeng, E., et al.: Adversarial discriminative domain adaptation. In: CVPR, pp. 2962–2971 (2017)

    Google Scholar 

  41. Tzeng, E., et al.: Deep domain confusion: Maximizing for domain invariance. Ar**v (2014)

    Google Scholar 

  42. Venkateswara, H., et al.: Deep hashing network for unsupervised domain adaptation. In: CVPR (2017)

    Google Scholar 

  43. Wu, Y., et al.: Large scale incremental learning. In: CVPR, pp. 374–382 (2019)

    Google Scholar 

  44. **a, H., Ding, Z.: HGNet: hybrid generative network for zero-shot domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 55–70. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_4

    Chapter  Google Scholar 

  45. **e, X., Chen, J., Li, Y., Shen, L., Ma, K., Zheng, Y.: Self-supervised CycleGAN for object-preserving image-to-image domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 498–513. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_30

    Chapter  Google Scholar 

  46. Xu, M., Islam, M., Lim, C.M., Ren, H.: Class-incremental domain adaptation with smoothing and calibration for surgical report generation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 269–278. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_26

    Chapter  Google Scholar 

  47. Yang, J., et al.: St3d: self-training for unsupervised domain adaptation on 3d object detection. In: CVPR, pp. 10363–10373 (2021)

    Google Scholar 

  48. Yang, J., et al.: St3d: self-training for unsupervised domain adaptation on 3d object detection. In: CVPR, pp. 10368–10378 (2021)

    Google Scholar 

  49. You, K., et al.: Universal domain adaptation. In: CVPR, pp. 2720–2729 (2019)

    Google Scholar 

  50. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: ICML, pp. 3987–3995 (2017)

    Google Scholar 

  51. Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic segmentation of urban scenes. In: ICCV, pp. 2039–2049 (2017)

    Google Scholar 

  52. Zhang, Y., et al.: From whole slide imaging to microscopy: deep microscopy adaptation network for histopathology cancer image classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 360–368. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_40

    Chapter  Google Scholar 

  53. Zhang, Y., et al.: Unleashing the power of contrastive self-supervised visual models via contrast-regularized fine-tuning. In: NeurIPS (2021)

    Google Scholar 

  54. Zhang, Y., Kang, B., Hooi, B., Yan, S., Feng, J.: Deep long-tailed learning: a survey. Arxiv (2021)

    Google Scholar 

  55. Zhang, Y., et al.: Collaborative unsupervised domain adaptation for medical image diagnosis. IEEE Trans. Image Process. 29, 7834–7844 (2020)

    Article  MATH  Google Scholar 

  56. Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_18

    Chapter  Google Scholar 

Download references

Acknowledgements.

This work was partially supported by National Key R &D Program of China (No.2020AAA0106900), National Natural Science Foundation of China (NSFC) 62072190, Program for Guangdong Introducing Innovative and Enterpreneurial Teams 2017ZT07X183.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanxia Liu or Mingkui Tan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 297 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, H. et al. (2022). Prototype-Guided Continual Adaptation for Class-Incremental Unsupervised Domain Adaptation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13693. Springer, Cham. https://doi.org/10.1007/978-3-031-19827-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19827-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19826-7

  • Online ISBN: 978-3-031-19827-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation