Object-Compositional Neural Implicit Surfaces

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

The neural implicit representation has shown its effectiveness in novel view synthesis and high-quality 3D reconstruction from multi-view images. However, most approaches focus on holistic scene representation yet ignore individual objects inside it, thus limiting potential downstream applications. In order to learn object-compositional representation, a few works incorporate the 2D semantic map as a cue in training to grasp the difference between objects. But they neglect the strong connections between object geometry and instance semantic information, which leads to inaccurate modeling of individual instance. This paper proposes a novel framework, ObjectSDF, to build an object-compositional neural implicit representation with high fidelity in 3D reconstruction and object representation. Observing the ambiguity of conventional volume rendering pipelines, we model the scene by combining the Signed Distance Functions (SDF) of individual object to exert explicit surface constraint. The key in distinguishing different instances is to revisit the strong association between an individual object’s SDF and semantic label. Particularly, we convert the semantic information to a function of object SDF and develop a unified and compact representation for scene and objects. Experimental results show the superiority of ObjectSDF framework in representing both the holistic object-compositional scene and the individual instances. Code can be found at https://qianyiwu.github.io/objectsdf/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atzmon, M., Lipman, Y.: Sal: sign agnostic learning of shapes from raw data. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  2. Chen, Y., Wu, Q., Zheng, C., Cham, T.J., Cai, J.: Sem2nerf: converting single-view semantic masks to neural radiance fields. ar**v preprint ar**v:2203.10821 (2022)

  3. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: Richly-annotated 3d reconstructions of indoor scenes. In: CVPR (2017)

    Google Scholar 

  4. Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised nerf: Fewer views and faster training for free. ar**v preprint ar**v:2107.02791 (2021)

  5. Deng, Y., Yang, J., **ang, J., Tong, X.: Gram: Generative radiance manifolds for 3d-aware image generation. ar**v preprint ar**v:2112.08867 (2021)

  6. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. ar**v preprint ar**v:2002.10099 (2020)

  7. Guo, M., Fathi, A., Wu, J., Funkhouser, T.: Object-centric neural scene rendering. ar**v preprint ar**v:2012.08503 (2020)

  8. Hassan, M., Choutas, V., Tzionas, D., Black, M.J.: Resolving 3d human pose ambiguities with 3d scene constraints. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2282–2292 (2019)

    Google Scholar 

  9. Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. ACM SIGGRAPH Comput. Graph. 18(3), 165–174 (1984)

    Article  Google Scholar 

  10. Kohli, A., Sitzmann, V., Wetzstein, G.: Semantic implicit neural scene representations with semi-supervised training. In: International Conference on 3D Vision (3DV) (2020)

    Google Scholar 

  11. Li, K., Rezatofighi, H., Reid, I.: Moltr: multiple object localization, tracking and reconstruction from monocular RGB videos. IEEE Robot. Autom. Lett. 6(2), 3341–3348 (2021)

    Article  Google Scholar 

  12. Liu, L., Gu, J., Lin, K.Z., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. ar**v preprint ar**v:2007.11571 (2020)

  13. Liu, X., Xu, Y., Wu, Q., Zhou, H., Wu, W., Zhou, B.: Semantic-aware implicit neural audio-driven video portrait generation. ar**v preprint ar**v:2201.07786 (2022)

  14. Luan, F., Zhao, S., Bala, K., Dong, Z.: Unified shape and SVBRDF recovery using differentiable monte carlo rendering. In: Computer Graphics Forum, vol. 40, pp. 101–113. Wiley Online Library (2021)

    Google Scholar 

  15. Max, N.: Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1(2), 99–108 (1995)

    Article  Google Scholar 

  16. McCormac, J., Handa, A., Davison, A., Leutenegger, S.: SemanticFusion: dense 3d semantic map** with convolutional neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4628–4635. IEEE (2017)

    Google Scholar 

  17. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3d reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  18. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  19. Nguyen-Phuoc, T.H., Richardt, C., Mai, L., Yang, Y., Mitra, N.: BlockGAN: learning 3d object-aware scene representations from unlabelled images. Adv. Neural Inf. Process. Syst. 33, 6767–6778 (2020)

    Google Scholar 

  20. Nie, Y., Han, X., Guo, S., Zheng, Y., Chang, J., Zhang, J.J.: Total3DUnderstanding: joint layout, object pose and mesh reconstruction for indoor scenes from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 55–64 (2020)

    Google Scholar 

  21. Niemeyer, M., Geiger, A.: Giraffe: representing scenes as compositional generative neural feature fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11453–11464 (2021)

    Google Scholar 

  22. Oechsle, M., Peng, S., Geiger, A.: UNISURF: unifying neural implicit surfaces and radiance fields for multi-view reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5589–5599 (2021)

    Google Scholar 

  23. Ost, J., Mannan, F., Thuerey, N., Knodt, J., Heide, F.: Neural scene graphs for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2856–2865 (2021)

    Google Scholar 

  24. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  25. Park, K., et al.: Nerfies: deformable neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874 (2021)

    Google Scholar 

  26. Prajwal, K., Mukhopadhyay, R., Namboodiri, V.P., Jawahar, C.: A lip sync expert is all you need for speech to lip generation in the wild. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 484–492 (2020)

    Google Scholar 

  27. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)

    Google Scholar 

  28. Rebain, D., Jiang, W., Yazdani, S., Li, K., Yi, K.M., Tagliasacchi, A.: DeRF: decomposed radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14153–14161 (2021)

    Google Scholar 

  29. Reiser, C., Peng, S., Liao, Y., Geiger, A.: KiloNeRF: speeding up neural radiance fields with thousands of tiny MLPs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14335–14345 (2021)

    Google Scholar 

  30. Rosinol, A., Gupta, A., Abate, M., Shi, J., Carlone, L.: 3d dynamic scene graphs: actionable spatial perception with places, objects, and humans. ar**v preprint ar**v:2002.06289 (2020)

  31. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: continuous 3d-structure-aware neural scene representations. ar**v preprint ar**v:1906.01618 (2019)

  32. Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.: Ref-NeRF: structured view-dependent appearance for neural radiance fields. In: CVPR (2022)

    Google Scholar 

  33. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. In: NeurIPS (2021)

    Google Scholar 

  34. Yang, B., et al.: Learning object-compositional neural radiance field for editable scene rendering. In: International Conference on Computer Vision (ICCV), October 2021

    Google Scholar 

  35. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. ar**v preprint ar**v:2106.12052 (2021)

  36. Yariv, L., et al.: Multiview neural surface reconstruction by disentangling geometry and appearance. Adv. Neural Inf. Process. Syst. 33, 2492–2502 (2020)

    Google Scholar 

  37. Yu, H.X., Guibas, L., Wu, J.: Unsupervised discovery of object radiance fields. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=rwE8SshAlxw

  38. Zhang, K., Luan, F., Li, Z., Snavely, N.: IRON: Inverse rendering by optimizing neural SDFs and materials from photometric images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5565–5574 (2022)

    Google Scholar 

  39. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: analyzing and improving neural radiance fields. ar**v preprint ar**v:2010.07492 (2020)

  40. Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron, J.T.: NeRFactor: neural factorization of shape and reflectance under an unknown illumination. ACM Trans. Graph (TOG) 40(6), 1–18 (2021)

    Article  Google Scholar 

  41. Zhi, S., Laidlow, T., Leutenegger, S., Davison, A.: In-place scene labelling and understanding with implicit scene representation. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

Download references

Acknowledgements

This research is partially supported by Monash FIT Start-up Grant and SenseTime Gift Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianyi Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 707 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Q. et al. (2022). Object-Compositional Neural Implicit Surfaces. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13687. Springer, Cham. https://doi.org/10.1007/978-3-031-19812-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19812-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19811-3

  • Online ISBN: 978-3-031-19812-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation