Self-supervised Human Mesh Recovery with Cross-Representation Alignment

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Fully supervised human mesh recovery methods are data-hungry and have poor generalizability due to the limited availability and diversity of 3D-annotated benchmark datasets. Recent progress in self-supervised human mesh recovery has been made using synthetic-data-driven training paradigms where the model is trained from synthetic paired 2D representation (e.g., 2D keypoints and segmentation masks) and 3D mesh. However, on synthetic dense correspondence maps (i.e., IUV) few have been explored since the domain gap between synthetic training data and real testing data is hard to address for 2D dense representation. To alleviate this domain gap on IUV, we propose cross-representation alignment utilizing the complementary information from the robust but sparse representation (2D keypoints). Specifically, the alignment errors between initial mesh estimation and both 2D representations are forwarded into regressor and dynamically corrected in the following mesh regression. This adaptive cross-representation alignment explicitly learns from the deviations and captures complementary information: robustness from sparse representation and richness from dense representation. We conduct extensive experiments on multiple standard benchmark datasets and demonstrate competitive results, hel** take a step towards reducing the annotation effort needed to produce state-of-the-art models in human mesh estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM SIGGRAPH 2005 Papers, pp. 408–416 (2005)

    Google Scholar 

  2. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep It SMPL: automatic estimation of 3D human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34

    Chapter  Google Scholar 

  3. C: Mocap. In: mocap. cs. cmu (2003)

    Google Scholar 

  4. Chen, C.H., Tyagi, A., Agrawal, A., Drover, D., Stojanov, S., Rehg, J.M.: Unsupervised 3d pose estimation with geometric self-supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5714–5724 (2019)

    Google Scholar 

  5. Clever, H.M., Grady, P., Turk, G., Kemp, C.C.: Bodypressure-inferring body pose and contact pressure from a depth image. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)

    Google Scholar 

  6. Georgakis, G., Li, R., Karanam, S., Chen, T., Košecká, J., Wu, Z.: Hierarchical kinematic human mesh recovery. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 768–784. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_45

    Chapter  Google Scholar 

  7. Guler, R.A., Kokkinos, I.: Holopose: Holistic 3d human reconstruction in-the-wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10884–10894 (2019)

    Google Scholar 

  8. Güler, R.A., Neverova, N., Kokkinos, I.: Densepose: dense human pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7297–7306 (2018)

    Google Scholar 

  9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  11. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE transactions on pattern analysis and machine intelligence 36(7), 1325–1339 (2013)

    Google Scholar 

  12. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7122–7131 (2018)

    Google Scholar 

  13. Karanam, S., Li, R., Yang, F., Hu, W., Chen, T., Wu, Z.: Towards contactless patient positioning. IEEE Trans. Med. Imaging 39(8), 2701–2710 (2020)

    Article  Google Scholar 

  14. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  16. Kocabas, M., Athanasiou, N., Black, M.J.: Vibe: video inference for human body pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5253–5263 (2020)

    Google Scholar 

  17. Kocabas, M., Huang, C.H.P., Hilliges, O., Black, M.J.: Pare: Part attention regressor for 3d human body estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 11127–11137 (October 2021)

    Google Scholar 

  18. Kocabas, M., Karagoz, S., Akbas, E.: Self-supervised learning of 3d human pose using multi-view geometry. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1077–1086 (2019)

    Google Scholar 

  19. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3d human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2252–2261 (2019)

    Google Scholar 

  20. Kolotouros, N., Pavlakos, G., Daniilidis, K.: Convolutional mesh regression for single-image human shape reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4501–4510 (2019)

    Google Scholar 

  21. Kolotouros, N., Pavlakos, G., Jayaraman, D., Daniilidis, K.: Probabilistic modeling for human mesh recovery. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 11605–11614 (October 2021)

    Google Scholar 

  22. Kundu, J.N., Rakesh, M., Jampani, V., Venkatesh, R.M., Venkatesh Babu, R.: Appearance consensus driven self-supervised human mesh recovery. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 794–812. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_46

    Chapter  Google Scholar 

  23. Kundu, J.N., Seth, S., Jampani, V., Rakesh, M., Babu, R.V., Chakraborty, A.: Self-supervised 3d human pose estimation via part guided novel image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6152–6162 (2020)

    Google Scholar 

  24. Kundu, J.N., Seth, S., Rahul, M., Rakesh, M., Radhakrishnan, V.B., Chakraborty, A.: Kinematic-structure-preserved representation for unsupervised 3d human pose estimation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11312–11319 (2020)

    Google Scholar 

  25. Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M.J., Gehler, P.V.: Unite the people: closing the loop between 3d and 2d human representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6050–6059 (2017)

    Google Scholar 

  26. Li, J., Xu, C., Chen, Z., Bian, S., Yang, L., Lu, C.: Hybrik: a hybrid analytical-neural inverse kinematics solution for 3d human pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3383–3393, June 2021

    Google Scholar 

  27. Lin, K., Wang, L., Liu, Z.: End-to-end human pose and mesh reconstruction with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1954–1963 (2021)

    Google Scholar 

  28. Liu, S., Song, L., Xu, Y., Yuan, J.: Nech: neural clothed human model. In: 2021 International Conference on Visual Communications and Image Processing (VCIP), pp. 1–5. IEEE (2021)

    Google Scholar 

  29. Liu, S., Huang, X., Fu, N., Li, C., Su, Z., Ostadabbas, S.: Simultaneously-collected multimodal lying pose dataset: enabling in-bed human pose monitoring. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  30. Loper, M., Mahmood, N., Black, M.J.: Mosh: Motion and shape capture from sparse markers. ACM Trans. Graph. (TOG) 33(6), 1–13 (2014)

    Article  Google Scholar 

  31. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)

    Article  Google Scholar 

  32. von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3d human pose in the wild using imus and a moving camera. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 601–617 (2018)

    Google Scholar 

  33. Mehta, D., et al.: Monocular 3d human pose estimation in the wild using improved CNN supervision. In: 2017 International Conference on 3D Vision (3DV), pp. 506–516. IEEE (2017)

    Google Scholar 

  34. Omran, M., Lassner, C., Pons-Moll, G., Gehler, P., Schiele, B.: Neural body fitting: Unifying deep learning and model based human pose and shape estimation. In: 2018 International Conference on 3D Vision (3DV), pp. 484–494. IEEE (2018)

    Google Scholar 

  35. Patel, P., Huang, C.H.P., Tesch, J., Hoffmann, D.T., Tripathi, S., Black, M.J.: Agora: Avatars in geography optimized for regression analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13468–13478 (2021)

    Google Scholar 

  36. Pavlakos, G., et al.: Expressive body capture: 3d hands, face, and body from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10975–10985 (2019)

    Google Scholar 

  37. Pavlakos, G., Zhou, X., Daniilidis, K.: Ordinal depth supervision for 3d human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7307–7316 (2018)

    Google Scholar 

  38. Pavlakos, G., Zhu, L., Zhou, X., Daniilidis, K.: Learning to estimate 3d human pose and shape from a single color image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 459–468 (2018)

    Google Scholar 

  39. Ravi, N., et al.: Accelerating 3d deep learning with pytorch3d. ar**v:2007.08501 (2020)

  40. Rhodin, H., Salzmann, M., Fua, P.: Unsupervised geometry-aware representation for 3D human pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 765–782. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_46

    Chapter  Google Scholar 

  41. Rogez, G., Schmid, C.: Mocap-guided data augmentation for 3d pose estimation in the wild. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 3108–3116 (2016)

    Google Scholar 

  42. Rong, Y., Liu, Z., Li, C., Cao, K., Loy, C.C.: Delving deep into hybrid annotations for 3d human recovery in the wild. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5340–5348 (2019)

    Google Scholar 

  43. Sengupta, A., Budvytis, I., Cipolla, R.: Synthetic training for accurate 3d human pose and shape estimation in the wild. In: BMVC (2020)

    Google Scholar 

  44. Sengupta, A., Budvytis, I., Cipolla, R.: Hierarchical kinematic probability distributions for 3d human shape and pose estimation from images in the wild. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11219–11229, October 2021

    Google Scholar 

  45. Sengupta, A., Budvytis, I., Cipolla, R.: Probabilistic 3d human shape and pose estimation from multiple unconstrained images in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16094–16104, June 2021

    Google Scholar 

  46. Song, J., Chen, X., Hilliges, O.: Human body model fitting by learned gradient descent. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 744–760. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_44

    Chapter  Google Scholar 

  47. Song, L., Yu, G., Yuan, J., Liu, Z.: Human pose estimation and its application to action recognition: a survey. J. Vis. Commun. Image Represent. 76, 103055 (2021)

    Article  Google Scholar 

  48. Tan, J., Budvytis, I., Cipolla, R.: Indirect deep structured learning for 3d human body shape and pose prediction. In: British Machine Vision Conference 2017, BMVC 2017 (2017)

    Google Scholar 

  49. Varol, G., Romero, J., Martin, X., Mahmood, N., Black, M.J., Laptev, I., Schmid, C.: Learning from synthetic humans. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 109–117 (2017)

    Google Scholar 

  50. Wandt, B., Rudolph, M., Zell, P., Rhodin, H., Rosenhahn, B.: Canonpose: self-supervised monocular 3d human pose estimation in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13294–13304 (2021)

    Google Scholar 

  51. Wehrbein, T., Rudolph, M., Rosenhahn, B., Wandt, B.: Probabilistic monocular 3d human pose estimation with normalizing flows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11199–11208, October 2021

    Google Scholar 

  52. Xu, H., Bazavan, E.G., Zanfir, A., Freeman, W.T., Sukthankar, R., Sminchisescu, C.: Ghum & ghuml: Generative 3d human shape and articulated pose models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6184–6193 (2020)

    Google Scholar 

  53. Xu, Y., Wang, W., Liu, T., Liu, X., **e, J., Zhu, S.C.: Monocular 3d pose estimation via pose grammar and data augmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  54. Xu, Y., Zhu, S.C., Tung, T.: Denserac: Joint 3d pose and shape estimation by dense render-and-compare. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7760–7770 (2019)

    Google Scholar 

  55. Yu, Z., Ni, B., Xu, J., Wang, J., Zhao, C., Zhang, W.: Towards alleviating the modeling ambiguity of unsupervised monocular 3d human pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8651–8660 (2021)

    Google Scholar 

  56. Yu, Z., Wang, J., Xu, J., Ni, B., Zhao, C., Wang, M., Zhang, W.: Skeleton2mesh: Kinematics prior injected unsupervised human mesh recovery. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8619–8629 (2021)

    Google Scholar 

  57. Zanfir, A., Bazavan, E.G., Zanfir, M., Freeman, W.T., Sukthankar, R., Sminchisescu, C.: Neural descent for visual 3d human pose and shape. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14484–14493 (2021)

    Google Scholar 

  58. Zanfir, M., Zanfir, A., Bazavan, E.G., Freeman, W.T., Sukthankar, R., Sminchisescu, C.: Thundr: transformer-based 3d human reconstruction with markers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12971–12980, October 2021

    Google Scholar 

  59. Zeng, W., Ouyang, W., Luo, P., Liu, W., Wang, X.: 3d human mesh regression with dense correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7054–7063 (2020)

    Google Scholar 

  60. Zhang, H., Cao, J., Lu, G., Ouyang, W., Sun, Z.: Learning 3d human shape and pose from dense body parts. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  61. Zhang, H., Tian, Y., Zhou, X., Ouyang, W., Liu, Y., Wang, L., Sun, Z.: Pymaf: 3d human pose and shape regression with pyramidal mesh alignment feedback loop. In: Proceedings of the IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  62. Zheng, M., Planche, B., Gong, X., Yang, F., Chen, T., Wu, Z.: Self-supervised 3d patient modeling with multi-modal attentive fusion. In: 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2022)

    Google Scholar 

  63. Zheng, Z., Yu, T., Wei, Y., Dai, Q., Liu, Y.: Deephuman: 3d human reconstruction from a single image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7739–7749 (2019)

    Google Scholar 

  64. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5745–5753 (2019)

    Google Scholar 

  65. Zhu, T., Karlsson, P., Bregler, C.: SimPose: effectively learning densepose and surface normals of people from simulated data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 225–242. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_14

    Chapter  Google Scholar 

  66. Zou, Z., Tang, W.: Modulated graph convolutional network for 3d human pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11477–11487, October 2021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Gong .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 961 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gong, X. et al. (2022). Self-supervised Human Mesh Recovery with Cross-Representation Alignment. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19769-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19768-0

  • Online ISBN: 978-3-031-19769-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation