Machine Learning Support for Board-Level Functional Fault Diagnosis

  • Chapter
  • First Online:
Machine Learning Support for Fault Diagnosis of System-on-Chip

Abstract

The ever-increasing integration density and design complexity of printed-circuit boards are making functional fault diagnosis extremely challenging. The cost associated with the testing, diagnosis and repair is one of the highest contributors to board manufacturing cost. To improve board-level functional fault diagnosis, machine-learning techniques are advocated, which can identify functional faults with high accuracy. In this chapter, we discuss machine learning support for board-level functional fault diagnosis. Section 1 presents an overview of board-level manufacturing tests and conventional fault-diagnosis models. Section 2 discusses the motivation of utilizing machine-learning techniques and the existing machine-learning-based diagnosis models. To address the practical issues that arise in real testing data, Sect. 3 presents a diagnosis system based on online learning algorithms and incremental updates. Section 4 presents a diagnosis system that utilizes domain-adaption algorithms to transfer the knowledge learned from mature boards to a new board. Section 5 concludes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Conroy, Z., Richmond, G., Gu, X., Eklow, B.: A practical perspective on reducing ASIC NTFs. In: IEEE International Conference on Test, pp. 1–7. IEEE, Piscataway (2005)

    Google Scholar 

  2. Krishnamoorthy, A.V., Thacker, H.D., Torudbakken, O., Müller, S., Srinivasan, A., Decker, P.J., Opheim, H., Cunningham, J.E., Shubin, I., Zheng, X., Dignum, M.: From chip to cloud: optical interconnects in engineered systems. J. Lightw. Technol. 35(15), 3103–3115 (2014)

    Article  Google Scholar 

  3. Ye, F., Zhang, Z., Chakrabarty, K., Gu, X.: Board-level functional fault diagnosis using multikernel support vector machines and incremental learning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(2), 279–290 (2014)

    Article  Google Scholar 

  4. Tourangeau, S., Eklow, B.: Test economics-what can a board/system test engineer do to influence supply operation metrics. In: IEEE International Test Conference, pp. 1–9. IEEE, Piscataway (2006)

    Google Scholar 

  5. Pantic, D.: Benefits of integrated-circuit burn-in to obtain high reliability parts. IEEE Trans. Reliabil. 35(1), 3–6 (1986)

    Article  Google Scholar 

  6. Fenton, W.G., McGinnity, T.M., Maguire, L.P.: Fault diagnosis of electronic systems using intelligent techniques: a review. IEEE Trans. Syst. Man Cybern. C 31(3), 269–281 (2001)

    Article  Google Scholar 

  7. Manley, D., Eklow, B.: A model based automated debug process. In: IEEE Board Test Workshop, pp. 1–7. IEEE, Piscataway (2002)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE, Piscataway (2016)

    Google Scholar 

  9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186 (2019)

    Google Scholar 

  10. Ye, F., Zhang, Z., Chakrabarty, K., Gu, X.: Adaptive board-level functional fault diagnosis using decision trees. In: IEEE Asian Test Symposium, pp. 202–207. IEEE, Piscataway (2012)

    Google Scholar 

  11. Ye, F., Zhang, Z., Chakrabarty, K., Gu, X.: Board-level functional fault diagnosis using artificial neural networks, support-vector machines, and weighted-majority voting. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32(5), 723–736 (2013)

    Article  Google Scholar 

  12. **, S., Ye, F., Zhang, Z., Chakrabarty, K., Gu, X.: Efficient board-level functional fault diagnosis with missing syndromes. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 35(6), 985–998 (2015)

    Article  Google Scholar 

  13. **, S., Chakrabarty, K.: Data-driven resiliency solutions for boards and systems. In: International Conference on VLSI Design and International Conference on Embedded Systems (VLSID), pp. 244–249. IEEE, Piscataway (2018)

    Google Scholar 

  14. Brzezinski, D., Stefanowski, J.: Combining block-based and online methods in learning ensembles from concept drifting data streams. Inf. Sci. 265, 50–67 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, M., Ye, F., Li, X., Chakrabarty, K., Gu, X.: Board-level functional fault identification using streaming data. In: IEEE VLSI Test Symposium (VTS), pp. 1–6. IEEE, Piscataway (2019)

    Google Scholar 

  16. Liu, M., Ye, F., Li, X., Chakrabarty, K., Gu, X.: Board-level functional fault identification using streaming data. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 40(9), 1920–1933 (2020)

    Article  Google Scholar 

  17. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 377–382. ACM, New York (2001)

    Google Scholar 

  18. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 226–235. ACM, New York (2003)

    Google Scholar 

  19. Hoens, T.R., Polikar, R., Chawla, N.V.: Learning from streaming data with concept drift and imbalance: an overview. Prog. Artif. Intell. 1(1), 89–101 (2012)

    Article  Google Scholar 

  20. Brzezinski, D., Stefanowski, J.: Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 81–94 (2013)

    Article  Google Scholar 

  21. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Gomes, H.M., Bifet, A., Read, J., Barddal, J.P., Enembreck, F., Pfharinger, B., Holmes, G., Abdessalem, T.: Adaptive random forests for evolving data stream classification. Mach. Learn. 106(9), 1469–1495 (2017)

    Article  MathSciNet  Google Scholar 

  23. Liaw, A., Wiener, M.: Classification and regression by randomForest. R News 2(3), 18–22 (2002)

    Google Scholar 

  24. Díaz-Uriarte, R., De Andres, S.A.: Gene selection and classification of microarray data using random forest. BMC Bioinf. 7(1), 1–13 (2006)

    Article  Google Scholar 

  25. Belgiu, M., Drăguţ, L.: Random forest in remote sensing: a review of applications and future directions. ISPRS J. Photogram. Remote Sens. 114, 24–31 (2016)

    Article  Google Scholar 

  26. Loh, W.Y.: Classification and regression trees. Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. 1(1), 14–23 (2011)

    Article  Google Scholar 

  27. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging bagging for evolving data streams. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 135–150. Springer, Berlin (2010)

    Google Scholar 

  28. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of SIAM International Conference on Data Mining, pp. 443–448. Society for Industrial and Applied Mathematics, Philadelphia (2017)

    Google Scholar 

  29. Liaperdos, J., Stratigopoulos, H.G., Abdallah, L., Tsiatouhas, Y., Arapoyanni, A., Li, X.: Fast deployment of alternate analog test using Bayesian model fusion. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1030–1035. IEEE, Piscataway (2015)

    Google Scholar 

  30. Ahmadi, A., Stratigopoulos, H.G., Huang, K., Nahar, A., Orr, B., Pas, M., Carulli, J.M., Makris, Y.: Yield forecasting across semiconductor fabrication plants and design generations. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 36(12), 2120–2133 (2017)

    Article  Google Scholar 

  31. Ye, F., Zhang, Z., Chakrabarty, K., Gu, X.: Knowledge discovery and knowledge transfer in board-level functional fault diagnosis. In: International Test Conference, pp. 1–10. IEEE, Piscataway (2014)

    Google Scholar 

  32. Liu, M., Li, X., Chakrabarty, K., Gu, X.: Knowledge transfer in board-level functional fault identification using domain adaptation. In: IEEE International Test Conference (ITC), pp. 1–10. IEEE, Piscataway (2019)

    Google Scholar 

  33. Liu, M., Li, X., Chakrabarty, K., Gu, X.: Knowledge transfer in board-level functional fault diagnosis enabled by domain adaptation. IEEE Trans. Computer-Aided Des. Integr. Circuits Syst. 41, 762–775 (2022)

    Article  Google Scholar 

  34. Howard, R.A.: Information value theory. IEEE Trans. Syst. Sci. Cybern. 2(1), 22–26 (1996)

    Article  Google Scholar 

  35. Kotsiantis, S., Kanellopoulos, D., Pintelas, P.: Handling imbalanced datasets: a review. GESTS Int. Trans. Comput. Sci. Eng. 30(1), 25–36 (2006)

    Google Scholar 

  36. Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning under covariate shift. J. Mach. Learn. Res. 10(9), 2137–2155 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Tsai, Y.H.H., Yeh, Y.R., Wang, Y.C.F.: Learning cross-domain landmarks for heterogeneous domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5081–5090. IEEE, Piscataway (2016)

    Google Scholar 

  38. Ghifary, M., Kleijn, W.B., Zhang, M.: Domain adaptive neural networks for object recognition. In: Pacific Rim International Conference on Artificial Intelligence, pp. 898–904. Springer, Cham (2014)

    Google Scholar 

  39. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105. PMLR (2015)

    Google Scholar 

  40. Yu, C., Wang, J., Chen, Y., Huang, M.: Transfer learning with dynamic adversarial adaptation network. In: IEEE International Conference on Data Mining (ICDM), pp. 778–786. IEEE, Piscataway (2019)

    Google Scholar 

  41. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? ar**v:1411.1792 (2014)

    Google Scholar 

  42. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of International Conference on International Conference on Machine Learning, pp. 807–814 (2010)

    Google Scholar 

  43. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, M., Li, X., Chakrabarty, K. (2023). Machine Learning Support for Board-Level Functional Fault Diagnosis. In: Girard, P., Blanton, S., Wang, LC. (eds) Machine Learning Support for Fault Diagnosis of System-on-Chip . Springer, Cham. https://doi.org/10.1007/978-3-031-19639-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19639-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19638-6

  • Online ISBN: 978-3-031-19639-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation