Optical Properties of Minerals in Plane Polarized Light (PPL)

  • Chapter
  • First Online:
Transmitted Light Microscopy of Rock-Forming Minerals

Abstract

This chapter is concerned with the optical parameters color (Sect. 4.1), habit/form (Sect. 4.2), relief (Sect. 4.3), and cleavage (Sect. 4.4). They are determined in plane polarized light in the so-called orthoscopic illumination mode. The polarizer in the substage assembly forces the light rays from the light source to vibrate in one plane perpendicular to the microscopic stage, and plane polarized light is produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 67.40
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 85.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armienti P, Pareschi MT, Innocenti F, Pompilio M (1994) Effects of magma storage and ascent on the kinetics of crystal growth. The case of the 1991–93 Mt. Etna eruption. Contrib Miner Petrol 115:402–414

    Article  Google Scholar 

  2. Bačík P, Fridrichová J, Štubňa J, Antal P (2015) Application of spectroscopic methods in mineralogical and gemmological research of gem tourmalines. Acta geologica slovaca 7(1):1–9

    Google Scholar 

  3. Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323

    Article  Google Scholar 

  4. Bank H, Henn U, Bank FH, v. Platen H, Hofmeister W (1990) Leuchtendblaue Cu-führende Turmaline aus Paraíba, Brasilien. Zeitschrift der Deutschen Gemmologischen Gesellschaft, 39(1):3–11

    Google Scholar 

  5. Bristow JK, Tiana D, Parker SC, Walsh A (2014) Defect chemistry of Ti and Fe impurities and aggregates in Al2O3. J Mater Chem A 2:6198–6208

    Article  Google Scholar 

  6. Burns RG (1993) Mineralogical applications of crystal field theory. 2nd edn, Cambridge University Press, p 551

    Google Scholar 

  7. Cashman KV, Ferry JM (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. Contrib Miner Petrol 99:401–415

    Article  Google Scholar 

  8. Cashman KV (2020) Crystal size distribution (CSD) analysis of volcanic samples: advances and challenges. Front. Earth Sci.10

    Google Scholar 

  9. Chopin C, Langer K (1988) Fe2+-Ti4+ charge transfer between face-sharing octahedra: polarized absorption spectra and crystal chemistry of ellenbergerite. Bull Minér 111(1):17–27

    Article  Google Scholar 

  10. Corfu F, Hanchar J, Hoskin P, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53(1):469–500

    Article  Google Scholar 

  11. Deer WA, Howie RA, Zussmann J (2013) An introduction to the rock-forming minerals. 3rd ed, Berforts Information Press, Stevenage, Herfordshire, p 498

    Google Scholar 

  12. Dubinsky EV, Stone-Sundberg J, Emmett JL (2020) A quantitative description of the causes of color in Corundum. Gems Gemol 56(1)

    Google Scholar 

  13. Fleischer M, Wilcox RE, Matzko JJ (1984) Microscopic Determination of the Nonopaque Minerals. 3rd ed. U.S. Geol. Surv. Bull. 1627 (revision of Bull 848): p 453

    Google Scholar 

  14. Gibbs GV, Cox DF, Ross NL, Crawford TD, Burt JB, Rosso KM (2005) A map** of the electron localization function for earth materials. Phys Chem Miner 32:208–221

    Article  Google Scholar 

  15. Gibbs GV, Downs RT, Cox DF, Ross NL, Prewitt CT, Rosso KM, Lippmann T, Kirfel A (2008) Bonded interactions and the crystal chemistry of minerals: a review. Z Kristallogr 223:1–40

    Article  Google Scholar 

  16. Goldschmidt V (1913–1923) Atlas der Krystalformen”. Carl Winters Universitätsbuchhandlung, Heidelberg, 7 Bände.

    Google Scholar 

  17. Greenidge D (2018) Investigations of color center phenomena in Topaz and Quartz through electron spin resonance with reference to optical absorption and nuclear magnetic resonance: Implications for extended mineral applications. Malaysian Journal of Fundamental and Applied Sciences. Special Issue on Chromatography and Other Analytical Techniques: 142–149

    Google Scholar 

  18. Hibbard JM (1994) Petrographic classification of crystal morphology. J Geol 102:571–581

    Article  Google Scholar 

  19. Higgins MD (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, p 265

    Google Scholar 

  20. Holtkamp M (2004–2019) Smorf crystal models. www.smorf.nl

  21. Kostov I, Kostov RI (1999) Crystal habit of minerals. Bulgarian Academic Monographs 1. Sofia: Pensoft Publishers and Prof. Marin Drinov Academic Publishing House

    Google Scholar 

  22. Marsh BD (1988) Crystal size distribution (CSD) and the kinetics and dynamics of crystallization. I Theory Contrib Miner Petrol 99:277–291

    Article  Google Scholar 

  23. Mattson SM, Rossman GR (1988) Fe 2 +–Ti 4 + charge transfer in stoichiometric Fe2+, Ti4+. Miner Phys Chem Miner 16:78–82

    Google Scholar 

  24. Merkel PB, Breeding CM (2009) Spectral differentiation between copper and iron colorants in gem tourmalines. Gems Gemology 45(2):112–119

    Article  Google Scholar 

  25. Nespolo M (2015) The ash heap of crystallography: restoring forgotten basic knowledge. J Appl Crystallogr 48:1290–1298

    Article  Google Scholar 

  26. Okrusch M, Frimmel HE (2020) Mineralogy. Springer-Verlag Germany, p 719

    Google Scholar 

  27. Phillips, WR (1981) Optical mineralogy: the nonopaque minerals. WH Freeman San Francisco

    Google Scholar 

  28. Pupin JP (1980) Zircon and granite petrology. Contrib Miner Petrol 73:207–220

    Article  Google Scholar 

  29. Randolph AD, Larson MA (1971) Theory of particulate processes. Academic Press, New York, p 251

    Google Scholar 

  30. Schmetzer K, Bernhardt H-J, Dunaigre C, Krzemnicki MS (2007) Vanadium-bearing gem-quality tourmalines from Madagascar. J Gemmol 30:413–433

    Article  Google Scholar 

  31. Schwarzinger C, Wildner M, Ulatowski S, Sawyer M (2019) Vanadium-bearing tourmaline from the commander mine, Nadonjukin, Tanzania. J Gemmol 36:534–543

    Article  Google Scholar 

  32. Shelley D (1992) Igneous and metamorphic rocks under the microscope. Classification, textures, microstructures and mineral preferred orientations. London Chapman and Hall, London 445p

    Google Scholar 

  33. Sherman DM (1987) Molecular orbital (SCF-Xa-SW) theory of metal-metal charge transfer processes in minerals I. application to Fe2 +→ Fe3+ charge transfer and “electron delocalization” in mixed-valence iron oxides and silicates. Phys Chem Miner 14:355–363

    Article  Google Scholar 

  34. Smith G (1978) Evidence for absorption by exchange-coupled Fe2+-Fe3+ pairs in the near infra-red spectra of minerals. Phys Chem Miner 3:375–383

    Article  Google Scholar 

  35. Taran M, Langer K (1998) Temperature and pressure dependencies of intervalence charge transfer bands in spectra of Fe- and Fe, Ti-bearing oxygen-based minerals. Neues Jb Mineral Abh 172:325–346

    Article  Google Scholar 

  36. Tertsch H (1949) Die Beckesche Lichtlinie. Mikroskopie-Zentralblatt für mikroskopische Forschung 4:296–307

    Google Scholar 

  37. Tröger WE (1979) Optical determination of rock-forming minerals. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, p 188

    Google Scholar 

  38. Vennari CE, Williams Q (2021) A high-pressure Raman study of FeTiO3 ilmenite: fermi resonance as a manifestation of Fe-Ti charge transfer. Phys Chem Miner 48:34

    Article  Google Scholar 

  39. Welsch B, Faure F, Famin V, Baronnet A, Bachèlery P (2012) Dendritic crystallization: a single process for all the textures of olivine in basalts? J Petrol 54:539–574

    Article  Google Scholar 

  40. Wenk H-R, Bulakh A (2016) Minerals. Cambridge University Press, p 640

    Google Scholar 

Further Reading

  1. Bloss FD (1999) Optical crystallography. Mineralogical Society of America, p 239

    Google Scholar 

  2. Dyar MD, Gunter ME, Tasa D (2008) Mineralogy and optical mineralogy. Mineralogical Society of America, Chantilly, VA, p 708

    Google Scholar 

  3. Kerr PF (1977) Optical mineralogy. 4st edition, McGrawHill Book Company, p 492

    Google Scholar 

  4. Nesse WD (2013) Introduction to optical mineralogy. 4th edn, Oxford University Press, p 361

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmidt, S.T. (2023). Optical Properties of Minerals in Plane Polarized Light (PPL). In: Transmitted Light Microscopy of Rock-Forming Minerals . Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-031-19612-6_4

Download citation

Publish with us

Policies and ethics

Navigation