Colloidal Nanoparticles of II-VI Semiconductor Compounds and Their Participation in Photosensitization of Metal Oxides

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Abstract

This chapter presents the methods for the colloidal synthesis of high-quality nanocrystals (quantum dots) and nanocrystal heterostructures based on II-VI semiconductors, electronic properties of nanoparticles of II-VI semiconductors, and summarizes the photosensitive properties of II-VI semiconductor nanoparticles/metal oxides nanocomposites. Colloidal II-VI nanoparticles effectively photosensitize wide-gap matrices of metal oxides, which results in the transfer of a photoexcited electron from a nanoparticle to oxide matrix and leads to a significant modification of photoconductivity of matrix. An important advantage of colloidal II-VI nanoparticles for photosensitization of metal oxide matrices is the control of phototransfer efficiency by simply changing the size of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kovalenko MV, Manna L, Cabot A, Hens Z, Talapin DV, Kagan CR, Klimov VI, Rogach AL, Reiss P, Milliron DJ, Guyot-Sionnnest P, Konstantatos G, Parak WJ, Hyeon T, Korgel BA, Murray CB, Heiss W (2015) Prospects of nanoscience with nanocrystals. ACS Nano 9:1012–1057. https://doi.org/10.1021/nn506223h

    Article  Google Scholar 

  2. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458. https://doi.org/10.1021/cr900137k

    Article  Google Scholar 

  3. Brichkin SB, Razumov VF (2016) Colloidal quantum dots: synthesis, properties and applications. Russ Chem Rev 85(12):1297–1312. https://doi.org/10.1070/RCR4656

    Article  ADS  Google Scholar 

  4. Hanifi DA, Bronstein ND, Koscher BA, Nett Z, Swabeck JK, Takano K, Schwartzberg AM, Maserati L, Vandewal K, van de Burgt Y, Salleo A, Alivisatos AP (2019) Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science 363:1199–1202. https://doi.org/10.1126/science.aat3803

    Article  ADS  Google Scholar 

  5. Efros AL, Efros Al.L. (1982) Interband absorption of light in a semiconductor sphere. Sov Phys Semicond 16:772–775

    Google Scholar 

  6. Ekimov AI, Onushchenko AA (1982) Quantum size effect in the optical spectra of semiconductor microcrystals. Sov Phys Semicond 16:775–778

    Google Scholar 

  7. Henglein A (1982) Photochemistry of colloidal cadmium sulfide. 2. Effects of adsorbed methyl viologen and of colloidal platinum. J Phys Chem 86:2291–2293

    Article  Google Scholar 

  8. Spanhel L, Haase M, Weller H, Henglein A (1987) Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc 109:5649–5655. https://doi.org/10.1021/j100210a010

    Article  Google Scholar 

  9. Spanhel L, Weller H, Fojtik A, Henglein A (1987) Photochemistry of semiconductor colloids. 17. Strong luminescing CdS and CdS-Ag2S particles. Ber Bunsenges Phys Chem 91:88–94. https://doi.org/10.1002/bbpc.19870910204

    Article  Google Scholar 

  10. Haase M, Weller H, Henglein A (1988) Photochemistry of colloidal semiconductors. 26. Photoelectron emission from cadmium sulfide particles and related chemical effects. J Phys Chem 92:4706–4712. https://doi.org/10.1021/j100327a030

    Article  Google Scholar 

  11. Rossetti R, Brus LJ (1982) Electron-hole recombination emission as a probe of surface chemistry in aqueous cadmium sulfide colloids. Phys Chem 86:4470–4472. https://doi.org/10.1021/j100220a003

    Article  Google Scholar 

  12. Rossetti R, Ellison JL, Gibson JM, Brus LE (1984) Size effects in the excited electronic states of small colloidal CdS crystallites. J Chem Phys 80:4464−4469.м. https://doi.org/10.1063/1.447228

    Article  Google Scholar 

  13. Rossetti R, Nakahara S, Brus LE (1983) Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J Chem Phys 79:1086–1088. https://doi.org/10.1063/1.445834

    Article  ADS  Google Scholar 

  14. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715. https://doi.org/10.1021/ja00072a025

    Article  Google Scholar 

  15. Hühn J, Carrillo-Carrion C, Soliman MG, Pfeiffer C, Valdeperez D, Masood A, Chakraborty I, Zhu L, Gallego M, Yue Z, Carril M, Feliu N, Escudero A, Alkilany AM, Pelaz B, del Pino Orcid P, Parak WJ (2017) Selected standard protocols for the synthesis, phase transfer, and characterization of inorganic colloidal nanoparticles. Chem Mater 29:399–461. https://doi.org/10.1021/acs.chemmater.6b04738

    Article  Google Scholar 

  16. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854. https://doi.org/10.1021/ja01167a001

    Article  Google Scholar 

  17. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed Engl 46:4630–4660. https://doi.org/10.1002/anie.200603148

    Article  Google Scholar 

  18. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–670. https://doi.org/10.1038/nature04165

    Article  ADS  Google Scholar 

  19. Peng X, Wickham J, Alivisatos AP (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120:5343–5344. https://doi.org/10.1021/ja9805425

    Article  Google Scholar 

  20. Jones M, Kumar S, Lo SS, Scholes GD (2008) Exciton trap** and recombination in type II CdSe/CdTe nanorod heterostructures. J Phys Chem C 112:5423–5431. https://doi.org/10.1021/jp711009h

    Article  Google Scholar 

  21. Dooley CJ, Dimitrov SD, Fiebig T (2008) Ultrafast electron transfer dynamics in CdSe/CdTe donor−acceptor nanorods. J Phys Chem C 112:12074–12076. https://doi.org/10.1021/jp804040r

    Article  Google Scholar 

  22. Shieh F, Saunders AE, Korgel BA (2005) General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J Phys Chem B 109:8538–8542. https://doi.org/10.1021/jp0509008

    Article  Google Scholar 

  23. Sun ZH, Oyanagi H, Uehara M, Nakamura H, Yamashita K, Fukano A, Maeda H (2009) Study on initial kinetics of CdSe nanocrystals by a combination of in situ X-ray absorption fine structure and microfluidic reactor. J Phys Chem C 113:18608–18613. https://doi.org/10.1021/jp907481q

    Article  Google Scholar 

  24. Park J, Lee KH, Galloway JF, Searson PC (2008) Synthesis of cadmium selenide quantum dots from a non-coordinating solvent: growth kinetics and particle size distribution. J Phys Chem C 112:17849–17854. https://doi.org/10.1021/jp803746b

    Article  Google Scholar 

  25. Crouch DJ, O’Brien P, Malik MA, Skabara PJ, Wright SP (2003) A one-step synthesis of cadmium selenide quantum dots from a novel single source precursor. Chem Commun 12:1454–1455. https://doi.org/10.1039/B301096A

    Article  Google Scholar 

  26. Milliron DJ, Hughes SM, Cui Y, Manna L, Li J, Wang L-W, Alivisatos AP (2004) Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430:190–195. https://doi.org/10.1038/nature02695

    Article  ADS  Google Scholar 

  27. Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP (2003) Controlled growth of tetrapod-branched inorganic nanocrystals. Nat Mater 2:382–385. https://doi.org/10.1038/nmat902

    Article  ADS  Google Scholar 

  28. Talapin DV, Nelson JH, Shevchenko EV, Aloni S, Sadtler B, Alivisatos AP (2007) Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett 7:2951–2959. https://doi.org/10.1021/nl072003g

    Article  ADS  Google Scholar 

  29. Vasiliev RB, Dorofeev SG, Dirin DN, Belov DA, Kuznetsova TA (2004) Synthesis and optical properties of PbSe and CdSe colloidal quantum dots capped with oleic acid. Mendeleev Commun 14:169–171. https://doi.org/10.1070/MC2004v014n04ABEH001970

    Article  Google Scholar 

  30. Qu LH, Peng ZA, Peng XG (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1:333–337. https://doi.org/10.1021/nl0155532

    Article  ADS  Google Scholar 

  31. Talapin DV, Koeppe R, Gotzinger S, Kornowski A, Lupton JM, Rogach AL, Benson O, Feldman J, Weller H (2003) Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett 3:1677–1681. https://doi.org/10.1021/nl034815s

    Article  ADS  Google Scholar 

  32. Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184. https://doi.org/10.1021/ja003633m

    Article  Google Scholar 

  33. Manna L, Scher EC, Alivisatos AP (2000) Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 122:12700–12706. https://doi.org/10.1021/ja003055+

    Article  Google Scholar 

  34. Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H (2001) A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J Phys Chem B 105:2260–2263. https://doi.org/10.1021/jp003177o

    Article  Google Scholar 

  35. Manna L, Scher EC, Li L-S, Alivisatos AP (2002) Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J Am Chem Soc 124:7136–7145. https://doi.org/10.1021/ja025946i

    Article  Google Scholar 

  36. Brennan JG, Siegrist T, Carroll PJ, Stuczynski SM, Reynders P, Brus LE, Steigerwald ML (1990) Bulk and nanostructure group II-VI compounds from molecular organometallic precursors. Chem Mater 2:403–409. https://doi.org/10.1021/cm00010a017

    Article  Google Scholar 

  37. Li Z, Ji Y, **e R, Grisham SY, Peng X (2011) Correlation of CdS nanocrystal formation with elemental sulfur activation and its implication in synthetic development. J Am Chem Soc 133:17248–17256. https://doi.org/10.1021/ja204538f

    Article  Google Scholar 

  38. Bullen C, van Embden J, Jasieniak J, Cosgriff JE, Mulder RJ, Rizzardo E, Gu M, Raston CL (2010) High activity phosphine-free selenium precursor solution for semiconductor nanocrystal growth. Chem Mater 22:4135–4143. https://doi.org/10.1021/cm903813r

    Article  Google Scholar 

  39. Li LS, Pradhan N, Wang Y, Peng X (2004) High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett 4:2261–2264. https://doi.org/10.1021/nl048650e

    Article  ADS  Google Scholar 

  40. Pradhan N, Peng X (2007) Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J Am Chem Soc 129:3339–3347. https://doi.org/10.1021/ja068360v

    Article  Google Scholar 

  41. Pradhan N, Goorskey D, Thessing J, Peng X (2005) An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J Am Chem Soc 127:17586–17587. https://doi.org/10.1021/ja055557z

    Article  Google Scholar 

  42. Hines MA, Guyot-Sionnest P (1998) Bright UV-blue luminescent colloidal ZnSe nanocrystals. J Phys Chem B 102:3655–3657. https://doi.org/10.1021/jp9810217

    Article  Google Scholar 

  43. **e Y, Carbone L, Nobile C, Grillo V, D’Agostino S, Della SF, Giannini C, Altamura D, Oelsner C, Kryschi C, Cozzoli PD (2013) Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling. ACS Nano 7:7352–7369. https://doi.org/10.1021/nn403035s

    Article  Google Scholar 

  44. Wei Y, Yang J, Lin AWH, Ying JY (2010) Highly reactive se precursor for the phosphine-free synthesis of metal selenide nanocrystals. Chem Mater 22:5672–5677. https://doi.org/10.1021/cm101308f

    Article  Google Scholar 

  45. Liu Y, Yao D, Shen L, Zhang H, Zhang X, Yang B (2012) Alkylthiol-enabled Se powder dissolution in oleylamine at room temperature for the phosphine-free synthesis of copper-based quaternary selenide nanocrystals. J Am Chem Soc 134:7207–7210. https://doi.org/10.1021/ja300064t

    Article  Google Scholar 

  46. Sowers KL, Swartz B, Krauss TD (2013) Chemical mechanisms of semiconductor nanocrystal synthesis. Chem Mater 25:1351–1362. https://doi.org/10.1021/cm400005c

    Article  Google Scholar 

  47. García-Rodríguez R, Hendricks MP, Cossairt BM, Liu H, Owen JS (2013) Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem Mater 25:1233–1249. https://doi.org/10.1021/cm3035642

    Article  Google Scholar 

  48. Liu HT, Owen JS, Alivisatos AP (2007) Mechanistic study of precursor evolution in colloidal group II−VI semiconductor nanocrystal synthesis. J Am Chem Soc 129:305–312. https://doi.org/10.1021/ja0656696

    Article  Google Scholar 

  49. Owen JS, Park J, Trudeau P-E, Alivisatos AP (2008) Reaction chemistry and ligand exchange at cadmium−selenide nanocrystal surfaces. J Am Chem Soc 130:12279–12281. https://doi.org/10.1021/ja804414f

    Article  Google Scholar 

  50. Owen JS, Chan EM, Liu H, Alivisatos AP (2010) Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. J Am Chem Soc 132:18206–18213. https://doi.org/10.1021/ja106777j

    Article  Google Scholar 

  51. Steckel JS, Yen BKH, Oertel DC, Bawendi MG (2006) On the mechanism of lead chalcogenide nanocrystal formation. J Am Chem Soc 128:13032–13033. https://doi.org/10.1021/ja062626g

    Article  Google Scholar 

  52. Evans CM, Evans ME, Krauss TD (2010) Mysteries of TOPSe revealed: insights into quantum dot nucleation. J Am Chem Soc 132:10973–10975. https://doi.org/10.1021/ja103805s

    Article  Google Scholar 

  53. Guo YJ, Marchuk K, Sampat S, Abraham R, Fang N, Malko AV, Vela J (2012) Unique challenges accompany thick-shell CdSe/nCdS (n > 10) nanocrystal synthesis. J Phys Chem C 116:2791–2800. https://doi.org/10.1021/jp210949v

    Article  Google Scholar 

  54. van Embden J, Chesman ASR, Jasieniak JJ (2015) The heat-up synthesis of colloidal nanocrystals. Chem Mater 27:2246–2285. https://doi.org/10.1021/cm5028964

    Article  Google Scholar 

  55. Yang YA, Wu H, Williams KR, Cao YC (2005) Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew Chem Int Ed 44:6712–6715. https://doi.org/10.1002/anie.200502279

    Article  Google Scholar 

  56. Ouyang J, Vincent M, Kingston D, Descours P, Boivineau T, Zaman MB, Wu X, Yu K (2009) Noninjection, one-pot synthesis of photoluminescent colloidal homogeneously alloyed CdSeS quantum dots. J Phys Chem C 113:5193–5200. https://doi.org/10.1021/jp8110138

    Article  Google Scholar 

  57. Jia J, Tian J, Mi W, Tian W, Liu X, Dai J, Wang X (2013) Growth kinetics of CdSe nanocrystals synthesized in liquid paraffin via one-pot method. J Nanopart Res 15:1724. https://doi.org/10.1007/s11051-013-1724-0

    Article  Google Scholar 

  58. Park E, Ryu J, Choi Y, Hwang K-J, Song R (2013) Photochemical properties and shape evolution of CdSe QDs in a non-injection reaction. Nanotechnology 24:145601. https://doi.org/10.1088/0957-4484/24/14/145601

    Article  ADS  Google Scholar 

  59. Zhu C-Q, Wang P, Wang X, Li Y (2008) Facile phosphine-free synthesis of CdSe/ZnS Core/Shell nanocrystals without precursor injection. Nanoscale Res Lett 3:213. https://doi.org/10.1007/s11671-008-9139-z

    Article  ADS  Google Scholar 

  60. Zhuang Z, Lu X, Peng Q, Li Y (2011) A facile “dispersion–decomposition” route to metal sulfide nanocrystals. Chem Eur J 17:10445–10452. https://doi.org/10.1002/chem.201101145

    Article  Google Scholar 

  61. Liu Y, Tang Y, Ning Y, Li M, Zhang H, Yanga B (2010) “One-pot” synthesis and shape control of ZnSe semiconductor nanocrystals in liquid paraffin. J Mater Chem 20:4451–4458. https://doi.org/10.1039/C0JM00115E

    Article  Google Scholar 

  62. Zhang J, Sun K, Kumbhar A, Fang J (2008) Shape-control of ZnTe nanocrystal growth in organic solution. J Phys Chem C 112:5454–5458. https://doi.org/10.1021/jp711778u

    Article  Google Scholar 

  63. Zhong H, Zhou Y, Ye M, He Y, Ye J, He C, Yang C, Li Y (2008) Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem Mater 20:6434–6443. https://doi.org/10.1021/cm8006827

    Article  Google Scholar 

  64. Liao H-C, Jao M-H, Shyue J-J, Chenc Y-F, Su W-F (2013) Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei. J Mater Chem A 1:337–341. https://doi.org/10.1039/C2TA00151A

    Article  Google Scholar 

  65. Ivanov VK, Fedorov PP, Baranchikov AE, Osiko VV (2014) Oriented attachment of particles: 100 years of investigations of non-classical crystal growth Russ. Chem Rev 83(12):1204–1222. https://doi.org/10.1070/RCR4453

    Article  Google Scholar 

  66. Choi CL, Alivisatos AP (2010) From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. Annu Rev Phys Chem 61:369–389. https://doi.org/10.1146/annurev.physchem.012809.103311

    Article  Google Scholar 

  67. Carbone L, Kudera S, Carlino E, Parak WJ, Giannini C, Cingolani R, Manna L (2005) Multiple wurtzite twinning in CdTe nanocrystals indicued by methylphosphonic acid. J Am Chem Soc 128:748–755. https://doi.org/10.1021/ja054893c

    Article  Google Scholar 

  68. Yu WW, Wang YA, Peng X (2003) Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chem Mater 15:4300–4308. https://doi.org/10.1021/cm034729t

    Article  Google Scholar 

  69. Li L, Hu J, Yang W, Alivisatos AP (2001) Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 1:349–351. https://doi.org/10.1021/nl015559r

    Article  ADS  Google Scholar 

  70. Katz D, Wizansky T, Millo O, Rothenberg E, Mokari T, Banin U (2002) Size-dependent tunneling and optical spectroscopy of CdSe quantum rods. Phys Rev Lett 89:086801. https://doi.org/10.1103/PhysRevLett.89.086801

    Article  ADS  Google Scholar 

  71. Li H, Kanaras AG, Manna L (2013) Colloidal branched semiconductor nanocrystals: state of the art and perspectives. Acc Chem Res 46(7):1387–1396. https://doi.org/10.1021/ar3002409

    Article  Google Scholar 

  72. Enders F, Sutter S, Fischli D, Köser R, Monter S, Cardinal S, Boldt K (2020) Regioselective growth mechanism of single semiconductor tips on CdS nanorods. Chem Mater 32(24):10566–10574. https://doi.org/10.1021/acs.chemmater.0c03636

    Article  Google Scholar 

  73. Rempel JY, Trout BL, Bawendi MG, Jensen KF (2006) Density functional theory study of ligand binding on CdSe (0001), (000-1), and (1120) single crystal relaxed and reconstructed surfaces: implications for nanocrystalline growth. J Phys Chem B 110:18007–18016. https://doi.org/10.1021/jp064051f

    Article  Google Scholar 

  74. Puzder A, Williamson AJ, Zaitseva N, Galli G, Manna L, Alivisatos AP (2004) The effect of organic ligand binding on the growth of CdSe nanoparticles probed by ab initio calculations. Nano Lett 4:2361–2365. https://doi.org/10.1021/nl0485861

    Article  ADS  Google Scholar 

  75. Rempel JY, Trout BL, Bawendi MG, Jensen KF (2005) Properties of the CdSe(0001), (0001), and (1120) single crystal surfaces: relaxation, reconstruction, and adatom and admolecule adsorption. J Phys Chem B 109:19320–19328. https://doi.org/10.1021/jp053560z

    Article  Google Scholar 

  76. Peng ZA, Peng X (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123:1389–1395. https://doi.org/10.1021/ja0027766

    Article  Google Scholar 

  77. Peng ZA, Peng X (2002) Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J Am Chem Soc 124:3343–3353. https://doi.org/10.1021/ja0173167

    Article  Google Scholar 

  78. Jun Y-W, Lee S-M, Kang N-J, Cheon J (2001) Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J Am Chem Soc 123:5150–5151. https://doi.org/10.1021/ja0157595

    Article  Google Scholar 

  79. Pang Q, Zhao LJ, Cai Y, Nguyen DP, Regnault N, Wang N, Yang SH, Ge WK, Ferreira R, Bastard G, Wang JN (2005) CdSe nano-tetrapods: controllable synthesis, structure analysis, and electronic and optical properties. Chem Mater 17:5263–5267. https://doi.org/10.1021/cm050774k

    Article  Google Scholar 

  80. Asokan S, Krueger KM, Colvin VL, Wong MS (2007) Shape controlled synthesis of CdSe tetrapods using cationic surfactant ligands. Small 3:1164–1169. https://doi.org/10.1002/smll.200700120

    Article  Google Scholar 

  81. Nishio K, Isshiki T, Kitano M, Shiojiri M (1997) Structure and growth mechanism of tetrapod-like ZnO particles. Philos Mag A 76:889–904. https://doi.org/10.1080/01418619708214216

    Article  ADS  Google Scholar 

  82. Zhu Y-C, Yo B, Xue D-F, Golberg D (2003) Nanocable aligned ZnS tetrapod nanocrystals. J Am Chem Soc 125:16196–16197. https://doi.org/10.1021/ja037965d

    Article  Google Scholar 

  83. Hu J, Yo B, Golberg D (2005) Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures. Small 1:95–99. https://doi.org/10.1002/smll.200400013

    Article  Google Scholar 

  84. Vasiliev RB, Dirin DN, Gaskov AM (2009) Temperature effect on the growth of colloidal CdTe nanotetrapods. Mendeleev Commun 19:126–127. https://doi.org/10.1016/j.mencom.2009.05.003

    Article  Google Scholar 

  85. Miszta K, Dorfs D, Genovese A, Kim MR, Manna L (2011) Cation exchange reactions in colloidal branched nanocrystals. ACS Nano 5:7176–7183. https://doi.org/10.1021/nn201988w

    Article  Google Scholar 

  86. Kanaras AG, Sonnichsen C, Liu H, Alivisatos AP (2005) Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. Nano Lett 5:2164–2167. https://doi.org/10.1021/nl0518728

    Article  ADS  Google Scholar 

  87. Mishra N, Vasavi Dutt VG, Arciniegas MP (2019) Recent progress on metal chalcogenide semiconductor tetrapod-shaped colloidal nanocrystals and their applications in optoelectronics. Chem Mater 31:9216–9242. https://doi.org/10.1021/acs.chemmater.8b05363

    Article  Google Scholar 

  88. Carbone L, Cozzoli PD (2010) Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5:449–493. https://doi.org/10.1016/j.nantod.2010.08.006

    Article  Google Scholar 

  89. Kundu P, Anumol EA, Nethravathi C, Ravishankar N (2011) Existing and emerging strategies for the synthesis of nanoscale heterostructures. Phys Chem Chem Phys 13:19256–19269. https://doi.org/10.1039/C1CP22343G

    Article  Google Scholar 

  90. Costi R, Saunders AE, Banin U (2010) Colloidal hybrid nanostructures: a new type of functional materials. Angew Chem Int Ed 49:4878–4897. https://doi.org/10.1002/anie.200906010

    Article  Google Scholar 

  91. Schartl W (2010) Current directions in core–shell nanoparticle design. Nanoscale 2:829–843. https://doi.org/10.1039/C0NR00028K

    Article  ADS  Google Scholar 

  92. Reiss P, Protiere M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5:154–168. https://doi.org/10.1002/smll.200800841

    Article  Google Scholar 

  93. Donega CM (2011) Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev 40:1512–1546. https://doi.org/10.1039/C0CS00055H

    Article  Google Scholar 

  94. Vasiliev RB, Dirin DN, Gaskov AM (2011) Semiconductor nanoparticles with spatial separation of charge carriers: synthesis and optical properties. Russ Chem Rev 80(12):1190–1210. https://doi.org/10.1070/RC2011v080n12ABEH004240

    Article  Google Scholar 

  95. Fiore A, Mastria R, Lupo MG, Lanzani G, Giannini C, Carlino E, Morello G, De Giorgi M, Li Y, Cingolani R, Manna L (2009) Tetrapod-shaped colloidal nanocrystals of II-VI semiconductors prepared by seeded growth. J Am Chem Soc 131:2274–2282. https://doi.org/10.1021/ja807874e

    Article  Google Scholar 

  96. Vasiliev RB, Dirin DN, Sokolikova MS, Roddatis VV, Vasiliev AL, Vitukhnovsky AG, Gaskov AM (2011) Facet-selective growth and optical properties of CdTe/CdSe tetrapod-shaped nanocrystal heterostructures. J Mater Res 26:1621–1626. https://doi.org/10.1557/jmr.2011.207

    Article  ADS  Google Scholar 

  97. Vasiliev RB, Dirin DN, Sokolikova MS, Dorofeev SG, Vitukhnovsky AG, Gaskov AM (2009) Growth of near-IR luminescent colloidal CdTe/CdS nanoheterostructures based on CdTe tetrapods. Mendeleev Commun 19:128–130. https://doi.org/10.1016/j.mencom.2009.05.004

    Article  Google Scholar 

  98. Morello G, Sala FD, Carbone L, Manna L, Maruccio G, Cingolani R, De Giorgi M (2008) Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: photoinduced screening of the internal electric field. Phys Rev B 78:195313. https://doi.org/10.1103/PhysRevB.78.195313

    Article  ADS  Google Scholar 

  99. Kraus RM, Lagoudakis PG, Rogach AL, Talapin DV, Weller H, Lupton JM, Feldmann J (2007) Room-temperature exciton storage in elongated semiconductor nanocrystals. Phys Rev Lett 98:017401. https://doi.org/10.1103/PhysRevLett.98.017401

    Article  ADS  Google Scholar 

  100. Müller J, Lupton JM, Lagoudakis PG, Schindler F, Koeppe R, Rogach AL, Feldmann J, Talapin DV, Weller H (2005) Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. Nano Lett 5:2044–2049. https://doi.org/10.1021/nl051596x

    Article  ADS  Google Scholar 

  101. Lo SS, Khan Y, Jones M, Scholes GD (2009) Temperature and solvent dependence of CdSe/CdTe heterostructure nanorod spectra. J Chem Phys 131:084714. https://doi.org/10.1063/1.3212693

    Article  ADS  Google Scholar 

  102. Li JJ, Tsay JM, Michalet X, Weiss S (2005) Wavefunction engineering: from quantum wells to near-infrared type-II colloidal quantum dots synthesized by layer-by-layer colloidal epitaxy. Chem Phys 318:82–90. https://doi.org/10.1016/j.chemphys.2005.04.029

    Article  Google Scholar 

  103. Li JJ, Wang YA, Guo W, Keay JC, Mishima TD, Johnson MB, Peng X (2003) Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc 125:12567–12575. https://doi.org/10.1021/ja0363563

    Article  Google Scholar 

  104. Esaki L (1986) A bird’s-eye view on the evolution of semiconductor superlattices and quantum wells. IEEE J Quantum Electron 22:1611. https://doi.org/10.1109/JQE.1986.1073162

    Article  ADS  Google Scholar 

  105. **a Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353. https://doi.org/10.1002/adma.200390087

    Article  Google Scholar 

  106. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933. https://doi.org/10.1126/science.271.5251.933

    Article  ADS  Google Scholar 

  107. Adachi S (2005) Properties of group-IV, III-V and II-VI semiconductors. Willey, Chichester

    Book  Google Scholar 

  108. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. https://doi.org/10.1021/cr030063a

    Article  Google Scholar 

  109. Ekimov AI, Hache F, Schanne-Klein MC, Ricard D, Flytzanis C, Kudryavtsev IA, Yazeva TV, Rodina AV, Efros Al L (1993) Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. J Opt Soc Am B 10:100. https://doi.org/10.1364/JOSAB.10.000100

    Article  ADS  Google Scholar 

  110. Klimov VI (2000) Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J Phys Chem B 104:6112. https://doi.org/10.1021/jp9944132

    Article  Google Scholar 

  111. Leatherdale CA, Woo W-K, Mikulec FV, Bawendi MG (2002) On the absorption cross section of CdSe nanocrystal quantum dots. J Phys Chem B 106:7619–7622. https://doi.org/10.1021/jp025698c

    Article  Google Scholar 

  112. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860. https://doi.org/10.1021/cm034081k

    Article  Google Scholar 

  113. Vasko FT, Kuznetsov AV (1999) Electronic states and optical transitions in semiconductor heterostructures. Springer, New York

    Book  MATH  Google Scholar 

  114. Larramona G, Choné C, Jacob A, Sakakura D, Delatouche B, Péré D, Cieren X, Nagino M, Bayón R (2006) Nanostructured photovoltaic cell of the type titanium dioxide, cadmium sulfide thin coating, and copper thiocyanate showing high quantum efficiency. Chem Mater 18:1688–1696. https://doi.org/10.1021/cm052819n

    Article  Google Scholar 

  115. Guijarro N, Lana-Villarreal T, Shen Q, Toyod T, Gómez R (2010) Sensitization of titanium dioxide photoanodes with cadmium selenide quantum dots prepared by SILAR: photoelectrochemical and carrier dynamics studies. J Phys Chem C 114:21928–21937. https://doi.org/10.1021/jp105890x

    Article  Google Scholar 

  116. Lee W, Min SK, Dhas V, Ogale SB, Han S-H (2009) Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells. Electrochem Commun 11:103–106. https://doi.org/10.1016/j.elecom.2008.10.042

    Article  Google Scholar 

  117. Pernik DR, Tvrdy K, Radich JG, Kamat PV (2011) Tracking the adsorption and electron injection rates of CdSe quantum dots on TiO2: linked versus direct attachment. J Phys Chem C 115:13511–13519. https://doi.org/10.1021/jp203055d

    Article  Google Scholar 

  118. Zheng K, Žídek K, Abdellah M, Zhang W, Chábera P, Lenngren N, Yartsev A, Pullerits T (2014) Ultrafast charge transfer from CdSe quantum dots to p-type NiO: hole injection vs hole trap**. J Phys Chem C 118:18462–18471. https://doi.org/10.1021/jp506963q

    Article  Google Scholar 

  119. Marcus R (1964) Chemical and electrochemical electron-transfer theory. Ann Rev Phys Chem 15:155–196. https://doi.org/10.1146/annurev.pc.15.100164.001103

    Article  ADS  Google Scholar 

  120. Tvrdy K, Frantsuzov PA, Kamat PV (2011) Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc Natl Acad Sci 108:29–34. https://doi.org/10.1073/pnas.1011972107

    Article  ADS  Google Scholar 

  121. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz Annalen der Physik. WILEY-VCH Verlag 437:55–75

    MATH  Google Scholar 

  122. Kagan CR, Murray CB, Nirmal M, Bawendi MG (1996) Electronic energy transfer in CdSe quantum dot solids. Phys Rev Lett 76:1517–1520. https://doi.org/10.1103/PhysRevLett.76.1517

    Article  ADS  Google Scholar 

  123. Vasiliev RB, Babynina AV, Maslova OA, Rumyantseva MN, Ryabova LI, Dobrovolsky AA, Drozdov KA, Khokhlov DR, Abakumov AM, Gaskov AM (2013) Photoconductivity of nanocrystalline SnO2 sensitized with colloidal CdSe quantum dots. J Mater Chem C 1:1005–1010. https://doi.org/10.1039/C2TC00236A

    Article  Google Scholar 

  124. Drozdov KA, Kochnev VI, Dobrovolsky AA, Popelo AV, Rumyantseva MN, Gaskov AM, Ryabova LI, Khokhlov DR, Vasiliev RB (2013) Photoconductivity of structures based on the SnO2 porous matrix coupled with core-shell CdSe/CdS quantum dots. Appl Phys Lett 103:133115. https://doi.org/10.1063/1.4823549

    Article  ADS  Google Scholar 

  125. Chizhov A, Vasiliev R, Rumyantseva M, Krylov I, Drozdov K, Batuk M, Hadermann J, Abakumov A, Gaskov A (2019) Light-activated sub-ppm NO2 detection by hybrid ZnO/QD nanomaterials vs. charge localization in core-shell QD. Front Mater 6(231). https://doi.org/10.3389/fmats.2019.00231

Download references

Acknowledgments

This work was supported by Russian Science Foundation grant No. 22-13-00101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman B. Vasiliev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasiliev, R.B., Chizhov, A.S., Rumyantseva, M.N. (2023). Colloidal Nanoparticles of II-VI Semiconductor Compounds and Their Participation in Photosensitization of Metal Oxides. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-19531-0_7

Download citation

Publish with us

Policies and ethics

Navigation