Hg-Based Narrow Bandgap II-VI Semiconductors

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Abstract

This chapter deals with Hg-based II-VI compounds, which include HgS, HgSe, and HgTe. The main structural parameters of the compounds are given, and the features of the synthesis of these compounds and their chemical properties are described. The stability of properties, the nature of the chemical bond, the band diagram, and the specific properties of zero or very narrow bandgap HgSe and HgTe are also analyzed. The physical and electrophysical parameters of Hg-based compounds are given. The approaches used for their do** are considered. A description is given of possible applications of Hg-based II-VI compounds, which include various types of IR photodetectors, Hall sensors, quantum electronics, spintronic, and optoelectronic devices. Disadvantages that may limit the widespread application of Hg-based II-VI compounds are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrikosov NK, Bankina VF, Poretskaya LV (1975) Semiconductor chalcogenides and alloys based on them. Nauka, Moscow, pp 48–82. (in Russian)

    Google Scholar 

  2. Agrawal A, Johns RW, Milliron DJ (2017) Control of localized surface plasmon resonances in metal oxide nanocrystals. Annu Rev Mater Res 47:1–31. https://doi.org/10.1146/annurev-matsci-070616-124259

    Article  Google Scholar 

  3. Askari S, Mariotti D, Stehr JE, Benedikt J, Keraudy J, Helmersson U (2018) Low-loss and tunable localized mid-infrared plasmons in nanocrystals of highly degenerate InN. Nano Lett 18:5681–5687. https://doi.org/10.1021/acs.nanolett.8b02260

    Article  Google Scholar 

  4. Baransky PI, Klochkov VP, Potykevich IV (1975) Semiconductor electronics. Handbook. Naukova Dumka, Kiev, p 581. (in Russian)

    Google Scholar 

  5. Bendias K, Shamim S, Herrmann O, Budewitz A, Shekhar P, Leubner P, Kleinlein J, Bocquillon E, Buhmann H, Molenkamp LW (2018) High mobility HgTe microstructures for quantum spin Hall studies. Nano Lett 18:4831–4836

    Article  Google Scholar 

  6. Bernevig BA, Hughes TL, Zhang S-C (2006) Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314:1757–1761

    Article  Google Scholar 

  7. Brown PR, Kim D, Lunt RR, Zhao N, Bawendi MG, Grossman JC, Bulović V (2014) Energy level modification in Lead Sulfide quantum dot thin films through ligand exchange. ACS Nano 8(6):5863–5872

    Article  Google Scholar 

  8. Capper P (ed) (1997) Narrow-gap II-VI compounds for optoelectronic and electromagnetic applications. Chapman and Hall, London

    Google Scholar 

  9. Chen M, Guyot-Sionnest P (2017) Reversible electrochemistry of mercury chalcogenide colloidal quantum dot films. ACS Nano 11:4165–4173

    Article  Google Scholar 

  10. Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM (2017) Compound copper chalcogenide nanocrystals. Chem Rev 117:5865–6109. https://doi.org/10.1021/acs.chemrev.6b00376

    Article  Google Scholar 

  11. Delin A, Kluner T (2002) Exitation spectra and ground-state properties from density-functional theory for the inverted bandstructure systems β-HgS, HgSe and HgTe. Phys Rev B 66:1–8

    Google Scholar 

  12. Deng Z, Jeong KS, Guyot-Sionnest P (2014) Colloidal quantum dots intraband photodetectors. ACS Nano 8:11707–11714. https://doi.org/10.1021/nn505092a

    Article  Google Scholar 

  13. Dickson FW, Tunell G (1959) The stability relations of cinnabar and metacinnabar. Am Mineral 44:471–487

    Google Scholar 

  14. Ding T, Zhu J (2003) Microwave heating synthesis of HgS and PbS nanocrystals in ethanol solvent. Mater Sci Eng B 100:307–313

    Article  Google Scholar 

  15. Duz I, Erdem I, Ozdemir KS, Kuzucu V (2016) First principles investigations of HgX(X=S, Se, Te). Arch Mater Sci Eng 79(1):5–11

    Article  Google Scholar 

  16. Einfeldt S, Heinke H, Behringer M, Becker CR, Kurtz E, Hommel D et al (1994) The growth of HgSe by molecular beam epitaxy for ohmic contacts to p-ZnSe. J Cryst Growth 138:471–476

    Article  Google Scholar 

  17. Goubet N, Thomas M, Gréboval C, Chu A, Qu J, Rastogi P et al (2020) Near to long-wave infrared mercury chalcogenide nanocrystals from liquid mercury. J Phys Chem C 124(15):8423–8430

    Article  Google Scholar 

  18. Goubet N, Jagtap A, Livache C, Martinez B, Portalès H, Xu XZ et al (2018) Terahertz HgTe nanocrystals: beyond confinement. J Am Chem Soc 140(15):5033–5036

    Article  Google Scholar 

  19. Gréboval C, Chu A, Goubet N, Livache C, Ithurria S, Lhuillier E (2021) Mercury chalcogenide quantum dots: material perspective for device integration. Chem Rev 121(7):3627–3700

    Article  Google Scholar 

  20. Green M, Mirzai H (2018) Synthetic routes to mercury chalcogenide quantum dots. J Mater Chem C 6:5097–5112. https://doi.org/10.1039/C8TC00910D

    Article  Google Scholar 

  21. Groves SH, Brown RN, Pidgeon CR (1967) Interband magnetoreflection and band structure of HgTe. Phys Rev 161:779–793

    Article  Google Scholar 

  22. Guglielmi M, Martucci A, Fick J, Vitrant G (1998) Preparation and characterization of HgxCd1-xS and PbxCd1-xS quantum dots and doped thin films. J Sol-Gel Sci Technol 11:229–240

    Article  Google Scholar 

  23. Hoffman CA, Meyer JR, Bartoli J (1989) Transport properties of narrow gap II-VI superlattices. MRS Proc 161:403–411

    Article  Google Scholar 

  24. Jagtap A, Livache C, Martinez B, Qu J, Chu A, Gréboval C et al (2018) Emergence of intraband transitions in colloidal nanocrystals. Opt Mater Express 8:1174–1183. https://doi.org/10.1364/OME.8.001174

    Article  Google Scholar 

  25. Jeong KS, Deng Z, Keuleyan S, Liu H, Guyot-Sionnest P (2014) Air-stable n-doped colloidal HgS quantum dots. J Phys Chem Lett 5(7):1139–1143

    Article  Google Scholar 

  26. Kadykov AM, Krishtopenko SS, Jouault B, Desrat W, Knap WM, Ruffenach S et al (2018) Temperature-induced topological phase transition in HgTe quantum wells. Phys Rev Lett 120:086401

    Article  Google Scholar 

  27. Kale SS, Lokhande CD (1999) Preparation and characterization of HgS films by chemical deposition. Mater Chem Phys 59:242–246

    Article  Google Scholar 

  28. Keuleyan S, Lhuillier E, Brajuskovic V, Guyot-Sionnest P (2011) Mid-infrared HgTe colloidal quantum dot photodetectors. Nat Photonics 5:489–493. https://doi.org/10.1038/nphoton.2011.142

    Article  Google Scholar 

  29. Kim J, Choi D, Jeong KS (2018) Self-doped colloidal semiconductor nanocrystals with intraband transitions in steady state. Chem Commun 54:8435–8445. https://doi.org/10.1039/C8CC02488J

    Article  Google Scholar 

  30. Kovalenko MV, Kaufmann E, Pachinger D, Roither J, Huber M, Stangl J et al (2006) Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations. J Am Chem Soc 128:3516–3517. https://doi.org/10.1021/ja058440j

    Article  Google Scholar 

  31. Kroupa DM, Vörös M, Brawand NP, McNichols BW, Miller EM, Gu J, Nozik AJ, Sellinger A, Galli G, Beard MC (2017) Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification. Nat Commun 8(1):15257

    Article  Google Scholar 

  32. Kudryavtsev KE, Rumyantsev VV, Aleshkin VY, Dubinov AA, Utochkin VV, Fadeev MA et al (2020) Temperature limitations for stimulated emission in 3–4 lm range due to threshold and non-threshold Auger recombination in HgTe/CdHgTe quantum wells. Appl Phys Lett 117:083103

    Article  Google Scholar 

  33. Liu Z, Janes LM, Saniepay M, Beaulac R (2018) Charge storage and quantum confinement resilience in colloidal indium nitride nanocrystals. Chem Mater 30:5435–5443. https://doi.org/10.1021/acs.chemmater.8b02340

    Article  Google Scholar 

  34. Liu H, Guyot-Sionnest P (2015) Magnetoresistance of manganese-doped colloidal quantum dot films. J Phys Chem 119(26):14797–14804

    Google Scholar 

  35. Livache C, Goubet N, Gréboval C, Martinez B, Ramade J, Qu J et al (2019a) Effect of pressure on interband and intraband transition of mercury chalcogenides quantum dots. J Phys Chem 123(20):13122–13130

    Google Scholar 

  36. Livache C, Martinez B, Greboval C, Lhuillier E (2019b) A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat Commun 10(1):2125

    Article  Google Scholar 

  37. Livache C, Martinez B, Goubet N, Ramade J, Lhuillier E (2018) Road map for nanocrystal based infrared photodetectors. Front Chem 6:575

    Article  Google Scholar 

  38. Luther JM, Jain PK, Ewers T, Alivisatos AP (2011) Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat Mater 10:361–366. https://doi.org/10.1038/nmat3004

    Article  Google Scholar 

  39. Mahalingam T, Kathalingam A, Sanjeeviraja C, Chandramohan R, Chu JP, Kim YD, Velumani S (2007) Electrodeposition and characterization of HgSe thin films. J Mater Character 58:735–739

    Article  Google Scholar 

  40. Martinez B, Livache C, Notemgnou Mouafo LD, Goubet N, Keuleyan S, Cruguel H et al (2017) HgSe self-doped nanocrystals as a platform to investigate the effects of vanishing confinement. ACS Appl Mater Interfaces 9(41):36173–36180

    Article  Google Scholar 

  41. Madelung O (2012) Semiconductors: data handbook. Springer

    Google Scholar 

  42. Man P, Pan DS (1991) Infrared absorption in HgTe. Phys Rev B 44:8745–8758

    Article  Google Scholar 

  43. Markov M, Rezaei E, Nayeb SS, Esfarjani K, Zebarjadi M (2019) Thermoelectric properties of semimetals. https://arxiv.org/abs/1905.08282

  44. Markov M, Hu X, Liu H-C, Liu N, Poon SJ, Esfarjani K, Zebarjadi M (2018) Semi-metals as potential thermoelectric materials. Sci Rep 8:9876

    Article  Google Scholar 

  45. Mathe MK, Cox SM, Venkatasamy V, Happek U, Stickney JL (2005) Formation of HgSe thin films using electrochemical atomic layer epitaxy. J Electrochem Soc 152(11):751–755

    Article  Google Scholar 

  46. Meyer JR, Hoffman CA, Bartoli FJ, Han JW, Cook JW, Schetzina JF et al (1988) Ultrahigh electron and hole mobilities in zero-gal Hg-based superlattices. Phys Rev B 38(3):2204–2207

    Article  Google Scholar 

  47. Moghaddam N, Gréboval C, Qu J, Chu A, Rastogi P, Livache C et al (2020) The strong confinement regime in HgTe two-dimentional nanoplatelets. J Phys Chem C 124:23460–23468

    Article  Google Scholar 

  48. Moore JE (2010) The birth of topological insulators. Nature 464(7286):194–198

    Article  Google Scholar 

  49. Park M, Choi D, Choi Y, Shin H, Jeong KS (2018) Mid-infrared intraband transition of metal excess colloidal Ag2Se nanocrystals. ACS Photon 5:1907–1911. https://doi.org/10.1021/acsphotonics.8b00291

    Article  Google Scholar 

  50. Patel BK, Rath S, Sarangi SN, Sahu SN (2007) HgS nanoparticles: structure and optical properties. Appl Phys A Mater Sci Process 86:447–450

    Article  Google Scholar 

  51. Pool F, Kossut J, Debska U, Reifenberger R (1987) Reduction of charge-center scattering rate in Hg1−xFexSe. Phys Rev B 35:3900

    Article  Google Scholar 

  52. Ramesh TG, Shubha V (1982) Transport properties under pressure in HgSe. J Phys C Solid State Phys 15:6193

    Article  Google Scholar 

  53. Ren T, Xu S, Zhao W, Zhu J (2005) A surfactant-assisted photochemical route to single crystalline HgS nanotubes. J Photochem Photobiol A 173:93–98

    Article  Google Scholar 

  54. Rogalski A (2005) HgCdTe infrared detector material: history, status and outlook. Rep Prog Phys 68:2267

    Article  Google Scholar 

  55. Qin A, Fang Y, Zhao W, Liu H, Su C (2005) Directionally dendritic growth of metal chalcogenide crystals via mild template-free solvothermal method. J Cryst Growth 283:230–241

    Article  Google Scholar 

  56. Qu J, Rastogi P, Greboval C, Lagarde D, Chu A, Dabard C et al (2020) Electroluminescence from HgTe nanocrystals and its use for active imaging. Nano Lett 20:6185–6190

    Article  Google Scholar 

  57. Sadat SF, Salavati-Niasari M, Esmaeili-Zare M (2014) Synthesis and characterization of mercury telluride nanoparticles using a new precursor. J Ind Eng Chem 20(5):3415–3420

    Article  Google Scholar 

  58. Salehi H, Hoseini FA (2019) First-principles study of structure, electronic and optical properties of HgSe in zinc blende (B3) phase. J Optoelectron Nanostruct 4(2):69–81

    Google Scholar 

  59. Schulman JN, McGillm TC (1979) The CdTe/HgTe superlattice: proposal for a new infrared material. Appl Phys Lett 34:663

    Article  Google Scholar 

  60. Stolpe J, Portugal O, Puhlmann N, Mueller H-U (2001) Intra and inter-band transitions in HgSe in magagauss fields. J Phys B 294:459–462

    Article  Google Scholar 

  61. Svane A, Christensen NE, Cardona M, Chantis AN, van Schilfgaarde M, Kotani T (2011) Quasiparticle band structures of β-HgS, HgSe, and HgTe. Phys Rev B 84:205205

    Article  Google Scholar 

  62. Takita K, Masuda K, Kudo H, Seki S (1980) Observation of surface evaporation of Hg from HgTe crystals by means of energetic oxygen ion backscattering. Appl Phys Lett 37:460–462

    Article  Google Scholar 

  63. Tang X, Tang X, Lai KWC (2016) Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films. ACS Photon 3:2396–2404. https://doi.org/10.1021/acsphotonics.6b00620

    Article  Google Scholar 

  64. Torres DD, Jain PK (2020) Crystal symmetry, strain, and facet-dependent nature of topological surface states in mercury selenide. J Phys Chem C 124(46):25615–25620

    Google Scholar 

  65. Tsidilkovski IM (1996) Electron spectrum of gapless semiconductors, Springer series in solid-state sciences, vol 116. Springer, New York

    MATH  Google Scholar 

  66. Villars P, Calvert LD (1985) Handbook of crystallographic data for inter metallic phases, 2nd edn. Asm International, Metals Park

    Google Scholar 

  67. Wang X-L, Dou SX, Zhang C (2010) Zero-gap materials for future spintronics, electronics and optics. NPG Asia Mater 2(1):31–38. https://doi.org/10.1038/asiamat.2010.7

  68. Wang H, Zhu J (2004) A sonochemical method for the selective synthesis of alpha-HgS and beta HgS NPs. Ultrason Sonochem 11:293–300

    Article  Google Scholar 

  69. Whitsett CR, Nelson DA (1972) Lattice thermal conductivity of p-type mercury telluride. Phys Rev B 5:3125–3138

    Article  Google Scholar 

  70. Zholudev MS, Kadykov AM, Fadeev MA, Marcinkiewicz M, Ruffenach S, Consejo C et al (2019) Experimental observation of temperature-driven topological phase transition in HgTe/CdHgTe quantum wells. Condens Matter 4:27

    Article  Google Scholar 

Download references

Acknowledgments

G.K. and D.N. are grateful to the State Program of the Republic of Moldova (project 20.80009.5007.02) for supporting their research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korotcenkov, G., Nika, D.L. (2023). Hg-Based Narrow Bandgap II-VI Semiconductors. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-19531-0_3

Download citation

Publish with us

Policies and ethics

Navigation