Cd- and Zn-Based Wide Band Gap II-VI Semiconductors

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors

Abstract

This chapter considers Cd- and Zn-based wide band gap II-VI compounds, which include ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. The main structural parameters of the compounds are given, and the features of the synthesis of single crystals and nanocrystals of these compounds, as well as the features of thin films deposition are discussed. Chemical properties, the instability of parameters caused by oxidation and dissociation, the nature of the chemical bond, and the band diagram are also analyzed. The physical, electrophysical, catalytic, and surface properties of wide band gap II-VI compounds are given. It is shown that Cd- and Zn-based II-VI compounds, especially ZnS, do not have the pinning of surface Fermi level. The approaches used for their do** by donor and acceptor impurities are considered. A description is given of possible applications of Cd- and Zn-based II-VI compounds, which include various types of visible and UV photodetectors, phosphors, opto-thermal devices, light-emitting diodes and lasers, solar cells, gas sensors, various biosensors, X-ray, gamma, and neutron detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi S (2004) Handbook of physical properties of semiconductors. Vol. 3. II-VI compounds semiconductors. Kluwer Academic Publishers, Boston

    Google Scholar 

  2. Adachi S (2005) Properties of group-IV, III-V and II-VI semiconductors. Wiley, Chichester

    Book  Google Scholar 

  3. Afzaal M, O’Brien P (2006) Recent developments in II–VI and III–VI semiconductors and their applications in solar cells. J Mater Chem 16:1597–1602

    Article  Google Scholar 

  4. Allahgholi A, Becker J, Delfs A, Delfs A, Dinapoli R, Gottlicher P et al (2019) Megapixels @ megahertz – the AGIPD high-speed cameras for the European XFEL. Nuclear Inst Methods Phys Res A 942:1–9

    Article  Google Scholar 

  5. Al’fer SA, Skums VF (2001) Investigation of the electrical conductivity of CdSe and CdTe at elevated temperatures and pressures. Inorg Mater (Russia) 37(12):1449–1453. (in Russian)

    Google Scholar 

  6. Aven JS, Prender M (eds) (1967) Physics and chemistry of II-VI compounds. North-Holland Publishing Co, Amsterdam

    Google Scholar 

  7. Avetisov IK, Ivanov YM, Zorin AV (2001) The problem of polymorphic transitions in CdTe. Surface (Russia) 10:82–88. (in Russian)

    Google Scholar 

  8. Bacaksiz E, Aksu S, Polat I, Yılmaz S, Altunbaş M (2009) The influence of substrate temperature on the morphology, optical and electrical properties of thermal-evaporated ZnSe thin films. J Alloys Compd 487:280–285

    Article  Google Scholar 

  9. Bai Z, Wang D (2012) Oxidation of CdTe thin film in air coated with and without a CdCl2 layer. Phys Status Solidi A 209(10):1982–1987

    Article  Google Scholar 

  10. Bao Z, Yang X, Li B, Luo R, Liu B, Tang P et al (2016) The study of CdSe thin film prepared by pulsed laser deposition for CdSe/CdTe solar cell. J Mater Sci Mater Electron 27(7):7233–7239

    Article  Google Scholar 

  11. Berding MА (1999) Native defects in CdTe. Phys Rev B 70(12):8943–8950

    Article  Google Scholar 

  12. Bootsma GA (1968) Gas adsorption on cadmium sulphide. Surf Sci 9:396–406

    Article  Google Scholar 

  13. Bouroushian M (2010) Electrochemistry of metal chalcogenides: monographs in electrochemistry. Springer, Berlin/Heidelberg, p 349

    Book  Google Scholar 

  14. Bukashkina T.L. (2018) Bulk and surface properties of adsorbent-catalysts based on CdSe-CdTe system. PhD thesis, Omsk State Technical University, Omsk (in Russian)

    Google Scholar 

  15. Caglar M, Zor M, Ilican S, Caglar Y (2006) Effect of indium incorporation on the optical properties of spray pyrolyzed Cd0.22Zn0.78S thin films. Czechoslov J Phys 56(3):277–287

    Article  Google Scholar 

  16. Campbell BD, Farnsworth HE (1968) Studies of structure and oxygen adsorption of (0001) CdS surfaces by LEED. Surf Sci 10:197–214

    Article  Google Scholar 

  17. Chen Q, Hillert M, Sundman B (1998) Phase equilibria, defect chemistry and semiconducting properties of CdTe(S) – thermodynamic modeling. J Electron Mater 27(8):145–158

    Article  Google Scholar 

  18. Cheng L, **ang Q, Liao Y, Zhang H (2018) CdS-based photocatalysts. Energy Environ Sci 11(6):1362–1391

    Google Scholar 

  19. Chopra KL (1983) Thin film solar cells. Plenum Press, New York

    Book  Google Scholar 

  20. Daweritz L (1971) Relative stability of zincblende and wurtzite structure in AIIBVI-compounds. Krist Tech 6(1):101–107

    Article  Google Scholar 

  21. Dengo N, De Fazio AF, Weiss M, Marschall R, Dolcet P, Fanetti M, Gross S (2018) Thermal evolution of ZnS nanostructures: effect of oxidation phenomena on structural features and photocatalytical performances. Inorg Chem 57(21):13104–13114

    Article  Google Scholar 

  22. Desnica-Frankovic ID, Dubcek P, Buljan M, Furic K, Desnica UV, Bernstorff S et al (2005) Influence of stoichiometry deviations on properties of ion-beam synthesized CdSe QDs. Nuclear Instr Meth Phys Res B 238:302–305

    Article  Google Scholar 

  23. Desnica UV (1998a) Wide band-gap II–VI compounds – can efficient do** be achieved? Vacuum 50(3–4):463–471

    Article  Google Scholar 

  24. Desnica UV (1998b) Do** limits in II-VI compounds-challenges, problems and solutions. Prog Cryst Growth Charact 36(4):291–357

    Article  Google Scholar 

  25. Ebina A, Takahashi T (1982) Studies of clean and adatom treated surfaces of II-VI compounds. J Cryst Growth 59:51–64

    Article  Google Scholar 

  26. Ebina A, Suda Y, Takahashi TT (1982) Oxidation of ZnSe (110) and ZnTe (110). Int J Electron 52(1):77–88

    Article  Google Scholar 

  27. Ebina A, Asano K, Suda Y, Takahaski T (1980) Oxidation properties of II-VI compound surfaces studied by low-energy electron-loss spectroscopy and 21 eV photoemission spectroscopy. J Vac Sci Technol 17(5):1074–1079

    Article  Google Scholar 

  28. Ebina A, Asano K, Takahashi T (1980) Surface properties of clean, and with adsorbed oxygen, surfaces of CdTe (110), (111), and (100) and of CdSe (0001) studied by electron-energy-loss spectroscopy and Auger-electron spectroscopy. Phys Rev B 22(4):1980–1991

    Article  Google Scholar 

  29. Eom NSA, Kim T-S, Choa Y-H, Kim W-B, Kim BS (2014) Surface oxidation behaviors of cd-rich CdSe quantum dot phosphors at high temperature. J Nanosci Nanotechnol 14:8024–8027

    Article  Google Scholar 

  30. Gloeckler M, Sankin I, Zhao Z (2013) CdTe solar cells at the threshold to 20% efficiency. IEEE J Photovolt 3(4):1389–1393

    Article  Google Scholar 

  31. Golovanov V, Smyntyna V, Korotcenkov G, Brinzari V (2001) CdxS- and SnxWO3-based gas sensors: the role of chemical composition in CO sensing. J Fotoelectron (Ukraine) 10:6–11

    Google Scholar 

  32. Goodell CM, Gilbert B, Weigand SJ, Banfield JF (2008) Kinetics of water adsorption-driven structural transformation of ZnS nanoparticles. J Phys Chem C 112:4791–4796

    Article  Google Scholar 

  33. Gréboval C, Chu A, Goubet N, Livache C, Ithurria S, Lhuillier E (2021) Mercury chalcogenide quantum dots: material perspective for device integration. Chem Rev 121(7):3627–3700

    Article  Google Scholar 

  34. Gupta SS, van Huis MA (2017) Adsorption study of a water molecule on vacancy-defected nonpolar CdS surfaces. J Phys Chem C 121:9815–9824

    Article  Google Scholar 

  35. Friedl J (1967) Dislocations. Addison-Wesley, Reading, p 74

    Google Scholar 

  36. Han P, Bester G (2017) Force field potentials for the vibrational properties of II-VI semiconductor nanostructures. Phys Rev B 96:195436

    Article  Google Scholar 

  37. Herl W (1988) Surface chemical properties of zinc sulfide. Langmuir 4(3):595–598

    Google Scholar 

  38. Hernández-Calderón I (2002) Optical properties and electronic structure of wide band gap II-VI semiconductors. In: II-VI semiconductor materials and their applications. Taylor and Francis, New York, pp 113–170

    Google Scholar 

  39. Ho SM, Olusola OI, Sharma DC, Mahmood W (2018) Zinc telluride thin films: a review. Asian J Chem 30(3):469–473

    Article  Google Scholar 

  40. Hodes G, Manassen J, Cahen D (1976) Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes. Nature 261:403–404

    Article  Google Scholar 

  41. Hong E, Kim JH, Yu S, Kim JH (2011) Effect of CdS contents on H2 production from Pt-(CdS/TiO2) film-typed photocatalysts. Korean J Chem Eng 28:1684–1687

    Article  Google Scholar 

  42. Hou Y, Laursen AB, Zhang J, Zhang G, Zhu Y, Wang X et al (2013) Layered nanojunctions for hydrogen-evolution catalysis. Angew Chem Int Ed 52:3621–3625

    Article  Google Scholar 

  43. Hu L, Wu H (2016) Influence of size and surface state emission on photoluminescence of CdSe quantum dots under UV irradiation. J Lumin 177:307–313

    Article  Google Scholar 

  44. Hwang HL, Hsu KYJ, Ueng HY (1996) Fundamental studies of p-type do** of CdTe. J Cryst Growth 161:73–81

    Article  Google Scholar 

  45. Ibrahim I, Lim HN, Zawawi RM, Tajudin AA, Ng YH, Guo H, Huang NM (2018) A review on visible-light induced photoelectrochemical sensors based on CdS nanoparticles. J Mater Chem B 6:4551–4568

    Article  Google Scholar 

  46. Ikhmayies SJ (ed) (2014) Advances in the II-VI compounds suitable for solar cell applications. Signpost Publisher

    Google Scholar 

  47. Jagtapa S, Chopade P, Tadepalli S, Bhalerao A, Gosavi S (2019) A review on the progress of ZnSe as inorganic scintillator. Opto-Electon Rev 27(1):90–103

    Article  Google Scholar 

  48. Jasieniak J, Mulvaney P (2007) From cd-rich to se-rich: the manipulation of CdSe nanocrystal surface stoichiometry. J Am Chem Soc 129:2841–2848

    Article  Google Scholar 

  49. Jia L, Kou H, Jiang Y, Yu S, Li J, Wang C (2013) Electrochemical deposition semiconductor ZnSe on a new substrate CNTs/PVA and its photoelectrical properties. Electrochim Acta 107:71–77

    Article  Google Scholar 

  50. Kasap S, Capper P (eds) (2006) Handbook of electronic and photonic materials. Springer, New York

    Google Scholar 

  51. Katrunov K, Ryzhikov V, Gavrilyuk V, Naydenov S, ZnSe Lysetska O, Litichevsky V (2013) Optimum design calculations for detectors based (Te, O) scintillators. Nuclear Instrum Methods Phys Res A 712:126–129

    Article  Google Scholar 

  52. Kendall EJM (1961) Structural peculiarities of zinc sulphide, cadmium sulphide, cadmium telluride and gallium phosphide. Phys Lett 8(4):237–238

    Article  Google Scholar 

  53. Khlopochkina EL, Gaivoronskii PE, Gavrishchuk EM, Elliev YE, Yashina EV (2001) Oxidation of polycrystalline zinc selenide with atmospheric oxygen. Russ J Appl Chem 74(7):1079–1081

    Article  Google Scholar 

  54. Kim JC, Choi J, Lee YB, Hong JH, Lee JI, Yang JW et al (2006) Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. Chem Commun 2006:5024–5026

    Article  Google Scholar 

  55. Kirovskaya IA, Nor PE, Ushakov OV, Pogodin SN (2017) Surface-active state of semiconductor materials based on CdTe–AIIS systems. AIP Conf Proc 1876:020068

    Article  Google Scholar 

  56. Kirovskaya IA, Mironova EV (2015) Oxidation and hydrogenation of carbon monoxide (II) on semiconductors of the InSb–CdTe system. Russ J Phys Chem 89:1286–1292

    Article  Google Scholar 

  57. Kirovskaya IA, Mironova EV (2014) Adsorbent surface. Semiconductor and oxide adsorbents. Publishing House of OmGTU, Omsk, 156 p (in Russian)

    Google Scholar 

  58. Kirovskaya IA, Nor PE (2013) Adsorption properties of CdS-CdTe system semiconductors. Russ J Phys Chem A 87(12):2077–2081

    Article  Google Scholar 

  59. Kirovskaya IA (2012) Surface properties of binary diamond-like semiconductors. OmSTU Publishing House, Omsk, 416 p (in Russian)

    Google Scholar 

  60. Kirovskaya IA, Podgornyi SO (2012) New catalysts for the oxidation of carbon monoxide. Rus J Phys Chem A 86(1):14–18

    Article  Google Scholar 

  61. Kirovskaya IA, Mironova EV, Rudko TL (2007) Catalytic properties of the InSb–CdTe system in the hydrogenation of carbon monoxide. J Phys Chem (Russia) 81(8):1385–1388

    Google Scholar 

  62. Kirovskaya IA (2004) Catalysis. Semiconductor catalysts. Publishing House of OmSTU, Omsk. (in Russian)

    Google Scholar 

  63. Kirovskaya IA, Murashko YA (2004) IR – spectroscopic studies of the surface of the components of the ZnTe – CdTe system. Omsk Sci Bull 1(26):66–67. (in Russian)

    Google Scholar 

  64. Kirovskaya IA (1989) Chemical state of the real surface of compounds of the A2В6 type. Izv Acad Sci USSR Ser Inorg Mater (Russia) 29(9):1472–1475. (in Russian)

    Google Scholar 

  65. Korotcenkov G (2020) Handbook of humidity measurement: methods, materials and technologies, Vol. 3: sensing materials and technologies. CRC Press, Boca Raton

    Book  Google Scholar 

  66. Korotcenkov G (2019) Handbook of humidity measurement: methods, materials and technologies, Vol. 2: electronic and electrical humidity sensors. CRC Press, Boca Raton

    Book  Google Scholar 

  67. Korotcenkov G (2014) Handbook of gas sensor materials. Vol. 2: new trends and technologies. Springer, New York

    Book  Google Scholar 

  68. Korotcenkov G (2013) Handbook of gas sensor materials. Vol. 1: conventional approaches. Springer, New York

    Book  Google Scholar 

  69. Korotcenkov G (ed) (2011) Chemical sensors: comprehensive sensor technologies. Vol. 6: sensors applications. Momentum Press, New York

    Google Scholar 

  70. Kovalenko AV, Korbutyak DV, Budzulyak SI (2011) Laser quntum-size structures based on II-VI compounds (review). Optoelectron Semicond Tech 46:7–27. (in Russian)

    Google Scholar 

  71. Kurtin S, McGill TC, Mead CA (1969) Fundamental transition in the electronic nature of solids. Phys Rev Lett 22(26):1433–1436

    Article  Google Scholar 

  72. Lee WG, Kim YK, Kim JK, Seo HJ, Ryzhikov V, Starzhinskiy N et al (2006) Particularities of ZnSe-based scintillators for a spectrometry of charged particles and gamma quanta. J Korean Phys Soc 48(1):47–50

    Article  Google Scholar 

  73. Li Y, Ma G, Jie W (2003) Point defects in CdTe. J Cryst Growth 256:266–275

    Article  Google Scholar 

  74. Lin B, Li H, An H, Hao W, Wei J, Dai Y et al (2018) Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Appl Catal B-Environ 220:542–552

    Article  Google Scholar 

  75. Lincot D (2005) Electrodeposition of semiconductors. Thin Solid Films 487:40–48

    Article  Google Scholar 

  76. Lu T, Dong S, Zhang C, Zhang L, Cui G (2017) Fabrication of transition metal selenides and their applications in energy storage. Coord Chem Rev 332:75–99

    Article  Google Scholar 

  77. Ma Q, Wang X, Li Y, Su X, ** Q (2007) The use of CdTe quantum dot fluorescent microspheres in fluoro-immunoassays and a microfluidic chip system. Luminescence 22(5):438–445

    Article  Google Scholar 

  78. Magerle R, Deicher M, Desnica U, Keller R, Pfeiffer W, Pleiffter F et al (1991) Structural defect recovery in GaP after heavy ion implantation. Appl Surf Sci 50:169–172

    Article  Google Scholar 

  79. Manner VW, Koposov AY, Szymanski P, Klimov VI, Sykora M (2012) Role of solvent-oxygen ion pairs in photooxidation of CdSe nanocrystal quantum dots. ACS Nano 6(3):2371–2377

    Article  Google Scholar 

  80. Maticiuc N, Kukk M, Spalatu N, Potlog T, Krunks M, Valdna V, Hiie J (2014) Comparative study of CdS films annealed in neutral, oxidizing and reducing atmospheres. Energy Procedia 44:77–84

    Article  Google Scholar 

  81. Mills KC (1974) Thermodynamic data for inorganic sulphides, selenides and tellurides. Butterworths, London

    Google Scholar 

  82. Mil’vidsky MG (1986) Semiconductor materials in modern electronics. Nauka, Moscow (in Russian)

    Google Scholar 

  83. Noskar RW, Mark P, Levine JD (1970) Polar surfaces of wurtzite and zincblende lattices. Surf Sci 19:291–317

    Article  Google Scholar 

  84. Oda O (2007) Compound semiconductor bulk materials and characterizations. World Scientific Publishing Company, p 538

    Book  Google Scholar 

  85. Oda M, Tsukamoto J, Hasegawa A, Iwami N, Nishiura K, Hagiwara I et al (2006) Photoluminescence of CdSe/ZnS/TOPO nanocrystals expanded on silica glass substrates: adsorption and desorption effects of polar molecules on nanocrystal surfaces. J Lumin 119–120:570–575

    Article  Google Scholar 

  86. Osip’yan Yu A, Petrenko VF, Zaretski AV (1986) Properties of II-VI semiconductors associated with moving dislocations. Adv Phys 35(2):115–188

    Article  Google Scholar 

  87. Owens A, Peacock A (2004) Compound semiconductor radiation detectors. Nuclear Instrum Methods Phys Res A 531:18–37

    Article  Google Scholar 

  88. Palatnik LS, Sorokin VK (1973) Fundamentals of film materials science. Energy, Moscow

    Google Scholar 

  89. Park DH, Cho YH, Shin DH, Ahn BT (2013) Preparation of intrinsic ZnO films at low temperature using oxidation of ZnS precursor and characterization of the films. Curr Photovolt Res 1(2):115–121

    Google Scholar 

  90. Pautrat JL (1994) II-VI semiconductor microstructures: from physics to optoelectronics. J Phys III France 4:2413–2425

    Article  Google Scholar 

  91. Ryzhikov V, Starzhinskiy N, Gal’chinetskii L, Gáshin P, Kozin D, Danshin E (2001) New semiconductor scintillators ZnSe (Te, O) and integrated radiation detectors based thereon. IEEE Trans Nucl Sci 48(3):356–359

    Article  Google Scholar 

  92. Ryzhikov V, Chernikov V, Galochinetskii L, Galkin S, Lisetskaya E, Opolonin A, Volkov V (1999) The use of semiconductor scintillation crystal AII-BVI in radiation instruments. J Cryst Growth 197(3):655–658

    Article  Google Scholar 

  93. Qin N, Liu Y, Wu W, Shen L, Chen X, Li Z, Wu L (2015) One-dimensional CdS/TiO2 nanofiber composites as efficient visible-light-driven photocatalysts for selective organic transformation: synthesis, characterization, and performance. Langmuir 31(3):1203–1209

    Article  Google Scholar 

  94. Yang Q, Zhao J, Guan M, Liu C, Cui L, Han D, Zeng Y (2011) Growth and annealing of zinc-blende CdSe thin films on GaAs (0 0 1) by molecular beam epitaxy. Appl Surf Sci 257(21):9038–9043

    Article  Google Scholar 

  95. Sadovnikov SI (2019) Synthesis, properties and applications of semiconductor nanostructured zinc sulfide. Russ Chem Rev 88:571–593

    Article  Google Scholar 

  96. Salas-Villasenor AL, Mejia I, Quevedo-Lopez MA (2014) Transparent and flexible thin film transistors with solution-based chalcogenide materials. ECS J Solid State Sci Technol 3(4):P107–P110

    Article  Google Scholar 

  97. Samantilleke AP, Cerqueira MF, Heavens S, Warren P, Dharmadasa IM, Muftah GEA et al (2011) Characterisation of chemical bath deposited CdS thin films on different substrates using electrolyte contacts. Thin Solid Films 519(21):7583–7586

    Article  Google Scholar 

  98. Sasaoka E, Hatori M, Sada N, Uddin MA (2000) Role of H2O in oxidative regeneration of ZnS formed from high-temperature desulfurization ZnO sorbent. Ind Eng Chem Res 39(10):3844–3848

    Article  Google Scholar 

  99. Schultze D, Steinike U, Kussin J, Kretzschma U (1995) Thermal oxidation of ZnS modifications Sphalerite and Wurtzite. Cryst Res Technol 30(4):553–558

    Article  Google Scholar 

  100. Shanmugam N, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G (2013) Effect of annealing on the ZnS nanocrystals prepared by chemical precipitation method. J Nanomater 2013:351798

    Article  Google Scholar 

  101. Sbiojiri M, Suito E, Sella C, Suryanaryanan R, Paparoditis C (1968) Influence of stoichiometric deviations on the nucleation and structure of co-evaporated thin films of PbTe and CdTe. J Cryst Growth 3–4:206

    Google Scholar 

  102. Seker F, Meeker K, Kuech TF, Ellis AB (2000) Surface chemistry of prototypical bulk II−VI and III−V semiconductors and implications for chemical sensing. Chem Rev 100:2505–2536

    Article  Google Scholar 

  103. Shen R, Ren D, Ding Y, Guan Y, Ng YH, Zhang P, Li X (2020) Nanostructured CdS for efficient photocatalytic H2 evolution: a review. Sci China Mater 63(11):2153–2188

    Article  Google Scholar 

  104. Singh H, Singh T, Sharma J (2018) Review on optical, structural and electrical properties of ZnTe thin films: effect of deposition techniques, annealing and do**. J Micro Smart Syst 7:123–143

    Article  Google Scholar 

  105. Smyntyna V, Golovanov V, Kaciulis S, Mattogno G, Righini G (1995) Influence of chemical composition on sensitivity and signal reproducibility of CdS sensors of oxygen. Sens Actuators B Chem 25:628–630

    Google Scholar 

  106. Sorokina IT, Sorokin E (2015) Femtosecond Cr2+-based lasers. IEEE J Sel Top Quantum Electron 21(1):1601519

    Article  Google Scholar 

  107. Strehlow WH (1969) Chemical polishing of II-VI compounds. J Appl Phys 40:2928–2932

    Article  Google Scholar 

  108. Su B, Choy KL (2000) Electrostatic assisted aerosol jet deposition of CdS, CdSe and ZnS thin films. Thin Solid Films 361–362:102–106

    Article  Google Scholar 

  109. Takahashi T, Watanabe S (2001) Recent progress in CdTe and CdZnTe detectors. IEEE Trans Nucl Sci 48(4):950–959

    Article  Google Scholar 

  110. Thiyagarajan R, Anusuya M, Mahaboob BM (2009) Study of structural and mechanical properties of zirconium doped cadmium sulphide thin film. J Am Sci 5(3):26–30

    Google Scholar 

  111. Tikhonova EL, Gaivoronskii PE, Elliev YE, Gavrisc EM (2003) Influence of conditions of zinc selenide oxidation with atmospheric oxygen on the composition of volatile products. Russ J Appl Chem 76(11):1724–1727

    Article  Google Scholar 

  112. Trenczek-Zajaca A (2019) Thermally oxidized CdS as a photoactive material. New J Chem 43:8892–8902

    Article  Google Scholar 

  113. Tripathy SK, Pattanaik A (2016) Optical and electronic properties of some binary semiconductors from energy gaps. Opt Mater 53:123–133

    Article  Google Scholar 

  114. Tristao JC, Magalhaes F, Corio P, Sansiviero MTC (2006) Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite. J Photochem Photobiol A Chem 181:152–157

    Article  Google Scholar 

  115. Ummartyotin S, Infahsaeng Y (2016) A comprehensive review on ZnS: from synthesis to an approach on solar cell. Renew Sust Energ Rev 55:17–24

    Article  Google Scholar 

  116. Urbańczyk M, Jakubik W, Maciak E (2005) Sensor properties of cadmium sulphide (Cds) thin films in surface acoustic wave system – preliminary results. Mol Quant Acoustics 26:273–281

    Google Scholar 

  117. Van Vechten JA (1975) Simple theoretical estimates of the Schottky constants and virtuaI-enthalpies of single vacancy formation in zinc-blende and Wurtzite type semiconductors. J Electrochem Soc 122:419–422

    Article  Google Scholar 

  118. Wald FV (1977) Applications of CdTe. A review. Rev Phys Appl 12(2):277–290

    Article  Google Scholar 

  119. Wang M, Zhang Q, Hao W, Sun Z-X (2011) Surface stoichiometry of zinc sulfide and its effect on the adsorption behaviors of xanthate. Chem Central J 5:73

    Article  Google Scholar 

  120. Wang X, Zhang J, Nazzal A, **ao M (2003) Photo-oxidation-enhanced coupling in densely packed CdSe quantum-dot films. Appl Phys Lett 83(1):162–164

    Article  Google Scholar 

  121. Woods-Robinson R, Han Y, Zhang H, Ablekim T, Khan I, Persson KA, Zakutayev A (2020) Wide band gap chalcogenide semiconductors. Chem Mater 120(9):4007–4055

    Google Scholar 

  122. Yan Q, Gao L, Tang J, Liu H (2019) Flexible and stretchable photodetectors and gas sensors for wearable healthcare based on solution-processable metal chalcogenides. J Semicond 40:111604

    Article  Google Scholar 

  123. Zakharov O, Rubio A, Blasé X, Cohen ML, Louie SG (1994) Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys Rev B 50(15):10780–10787

    Article  Google Scholar 

  124. Zhang Q, Li H, Ma Y, Zhai T (2016) ZnSe nanostructures: synthesis, properties and applications. Phys Mater Sci 83:472–535

    Google Scholar 

  125. Zhang H, Rustad JR, Banfield JF (2007) Interaction between water molecules and zinc sulfide nanoparticles studied by temperature-programmed desorption and molecular dynamics simulations. J Phys Chem A 111:5008–5014

    Article  Google Scholar 

  126. Skhouni O, El Manouni A, Mari B, Ullah H (2016) Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cells performance. Eur Phys J Appl Phys 74:24602

    Google Scholar 

Download references

Acknowledgments

G.K. is grateful to the State Program of the Republic of Moldova (project 20.80009.5007.02) for supporting his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghenadii Korotcenkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korotcenkov, G. (2023). Cd- and Zn-Based Wide Band Gap II-VI Semiconductors. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-19531-0_2

Download citation

Publish with us

Policies and ethics

Navigation