Experimental Determination of Liquid-Liquid Equilibrium Data on Ternary Water Systems

  • Conference paper
  • First Online:
Experimental Research and Numerical Simulation in Applied Sciences (CNNTech 2022)

Abstract

Due to the increase in energy consumption at the global level, it is necessary to examine new possibilities of substitution of classical energy-intensive separation processes based on evaporation of more volatile components, separation processes based on liquid-liquid equilibria (LLE), i.e. extraction of components from liquid solutions. This procedure would also include the replacement of standard industrial solvents with environmentally harmful characteristics with new, green solvents. Diethyl adipate can be used for these purposes because it is relatively non-toxic, obtained from renewable sources and is biodegradable. In order to examine the possibilities of using green solvents, the possibilities of adequate replacement and process design, it is necessary to know thermodynamic data such as liquid-liquid equilibria data, the corresponding binodal curve and equilibrium lines. The liquid-liquid equilibria data of the ternary system water + ethanol + diethyl adipate will be determined experimentally at a temperature of 298.15 K and atmospheric pressure. Binodal curves will be determined using the synthetic blur method using both the titration technique and the equilibrium lines via the refractive index. The obtained experimental data will be used in determining the complete phase diagram of the mentioned system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dai, Y., Zheng, F., **a, B., Cui, P., Wang, Y.: Jun Gao, Application of Mixed Solvent To Achieve an Energy-Saving Hybrid Process Including Liquid−Liquid Extraction and Heterogeneous Azeotropic Distillation. Ind. Eng. Chem. Res. 58, 2379–2388 (2019)

    Article  Google Scholar 

  2. Malicoa, I., Pereiraa, R.N., Gonçalvesa, A.C., Sousa, A.M.O.: Current status and future perspectives for energy production from solid biomass in the European industry. Renew. Sustain. Energy Rev. 112, 960–977 (2019)

    Article  Google Scholar 

  3. Baranidharan, M., Kanna, R.R., Singh, R.R.: Energy Saving on Industrial Drive Technologies - Past, Present, and Future Perspective, IOP Conf. Series: Materials Science and Engineering 906, 012005 (2020)

    Google Scholar 

  4. Giraud, R.J., Williams, R.A., Sehgal, A., Ponnusamy, E., Phillips, A.K., Manley, J.B.: Implementing green chemistry in chemical manufacturing: a survey report. ACS Sustainable Chem. Eng. 2237−2242 (2014)

    Google Scholar 

  5. Aljimaz, A., Fandary, M.S.H., Alkandary, J.A., Fahim, M.A.: Liquid-liquid equilibria of the ternary system water + acetic acid + 1-heptanol. J. Chem. Eng. Data 45, 301–303 (2000)

    Article  Google Scholar 

  6. Nann, A., Held, C., Sadowski, G.: Liquid−liquid equilibria of 1-Butanol/Water/IL Systems. Ind. Eng. Chem. Res. 52, 18472–18481 (2013)

    Article  Google Scholar 

  7. Garcıa-Flores, B.E., Galicia-Aguilar, G., Eustaquio-Rincón, R., Trejo, A.: Liquid–liquid phase diagrams of ternary systems as a function of temperature: isooctane + aromatic + methanol with and without water. Fluid Phase Equilib. 185, 275–293 (2001)

    Article  Google Scholar 

  8. Wales, M.D., et al.: Liquid−liquid equilibria for ternary systems of water + methoxycyclopentane + alcohol (Methanol, Ethanol, 1-Propanol, or 2-Propanol). J. Chem. Eng. Data 61, 1479–1484 (2016)

    Article  Google Scholar 

  9. Ghanadzadeh, H., Ghanadzadeh, A.: (Liquid + liquid) equilibria in (water + ethanol + 2-ethyl-1-hexanol) at T ¼ (298.2, 303.2, 308.2, and 313.2) K. J. Chem. Thermodynamics 35, 1393–1401 (2003)

    Google Scholar 

  10. Ivaniš, G.R., Vuksanović, J.M., Calado, M.S., Kijevčanin, M.L., Šerbanović, S.P., Višak, Z.P.: Liquid-liquid and solid-liquid equilibria in the solutions of poly(ethylene glycol) with several organic solvents. Fluid Phase Equilib. 316, 74–84 (2012)

    Article  Google Scholar 

  11. Najdanović-Višak, V., et al.: Co-solvent effects in LLE of 1-hydroxyethyl-3-methylimidazolium based ionic liquids + 2-propanol + dichloromethane or 1,2-dichloroethane. Fluid Phase Equilib. 254, 35–41 (2007)

    Article  Google Scholar 

  12. Ghanadzadeh, H., Ghanadzadeh, A.: Liquid–liquid phase equilibria of the ternary system of water/TBA/2-ethyl-1-hexanol. Fluid Phase Equilib. 202, 337–344 (2002)

    Article  Google Scholar 

  13. Alkandary, J.A., Aljimaz, A.S., Fandary, M.S., Fahim, M.A.: Liquid–liquid equilibria of water + MTBE + reformate. Fluid Phase Equilib. 187–188, 131–138 (2001)

    Article  Google Scholar 

  14. Logsdon, J.E.: Ethanol. Kirk-Othmer Encyclopedia of Chemical Technology. s.l. John Wiley & Sons Inc. (2000)

    Google Scholar 

  15. Oliveira, F.S., Pereiro, A.B., Rebeloa, L.P.N., Marrucho, I.M.: Deep eutectic solvents as extraction media. Green Chemistry Journal 15, 1326–1330 (2013)

    Article  Google Scholar 

  16. Chaibakhsh, N., Abdul Rahman, M.N., Abu Bakar Salleh, M.B.: Rahman RNZR. Effect of alcohol chain length on the optimum conditions for lipase-catalyzed synthesis of adipate esters 27, 303–308 (2009)

    Google Scholar 

  17. Zhu, R., Cheung, C.S., Huang, Z., Wang, X.: Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate. Athmospheric Enviroment Jurnal 45, 2174–2181 (2011)

    Google Scholar 

  18. Cho, J., Park, J., Jeon, J.: Comparison of three- and two-column configurations in ethanol dehydration using azeotropic distillation. J. Ind. Eng. Chem. 12, 206–215 (2006)

    Google Scholar 

  19. Rodríguez, N.R., González, A.S.B., Tijssen, P.M.A., Kroon, M.C.: Low transition temperature mixtures (LTTMs) as novel entrainers in extractive distillation. Fluid Phase Equilib. 385, 72–78 (2015)

    Article  Google Scholar 

  20. Anastas, P.T., Warner, J.C.: Green Chemistry: Theory and Practice. Oxford University Press, New York (2000)

    Google Scholar 

  21. Aissa, M., Radović, I., Simić, Z., Kijevcanin, K.: Thermodynamic and transport properties of ternary mixture (ethyl oleate + n-hexadecane + 1-butanol) and its binary constituents (ethyl oleate + 1-butanol and ethyl oleate + n-hexadecane) at different temperatures and atmospheric pressure. J. Mol. Liq. 317, 114186 (2020)

    Article  Google Scholar 

  22. Simić, Z., Kijevčanin, M., Radović, I., Grilc, M., Gorica, I.: Thermodynamic and transport properties of biomass-derived furfural, furfuryl alcohol and their mixtures. Energies 14(22), 7769 (2021)

    Article  Google Scholar 

  23. Ilić Pajić, J., et al.: Experimental densities and derived thermodynamic properties of pure p-cymene, α-pinene, limonene and citral under high pressure conditions. J. Chem. Thermodynamics 144, 106064 (2020)

    Article  Google Scholar 

  24. Vuksanović, J., Soldatović, D., Radović, I., Višak, Z., Kijevčanin, M.: Thermodynamic characterization of binary mixtures of poly(propylene glycol) 425 with toluene and o-, m- and p-xylenes. J. Chem. Thermodynamics 131, 393–403 (2019)

    Article  Google Scholar 

  25. Vuksanović, J., Kijevčanin, M.L., Radović, I.R.: Effect of water addition on extraction ability of eutectic solvent choline chloride+ 1,2-propanediol for separation of hexane/heptane+ethanol systems. Korean J. Chem. Eng. 35(7), 1477–1487 (2018). https://doi.org/10.1007/s11814-018-0030-z

    Article  Google Scholar 

  26. Aissa, M., Radović, I., Kijevčanin, M.: A systematic study on volumetric and transport properties of binary systems 1-propanol + n-hexadecane, 1-butanol + n-hexadecane and 1-propanol + ethyl oleate at different temperatures: Experimental and modeling. Fluid Phase Equilib. 473, 1–16 (2018)

    Article  Google Scholar 

  27. Vuksanović, J., Živković, E., Radović, I., Djordjević, B., Šerbanović, S., Kijevčanin, M.: Experimental study and modelling of volumetric properties, viscosities and refractive indices of binary liquid mixtures benzene+PEG 200/PEG 400 and toluene+PEG 200/PEG 400. Fluid Phase Equilib. 345, 28–44 (2013)

    Article  Google Scholar 

  28. Ivanis, G., Vuksanovic, J., Calado, M., Kijevcanin, M., Serbanovic, S., Visak, Z.: Liquid-liquid and solid-liquid equilibria in the solutions of poly(ethylene glycol) with several organic solvents. Fluid Phase Equilib. 316, 74–84 (2012)

    Article  Google Scholar 

  29. Knežević-Stevanović, A., Radović, I., Šerbanović, S., Kijevčanin, M.: Densities, viscosities, and refractive indices of the ternary mixture dimethyladipate + 2-butanone + 1-butanol at T = (288.15 to 323.15) K. Journal of Chemical and Engineering Data 59, 4133–4150 (2014)

    Google Scholar 

  30. Radović, I.: doctoral dissertation, Faculty of Technology and Metallurgy. University of Belgrade (2008)

    Google Scholar 

  31. Gilani, A.G., Gilani, H.G., Saadat, S.L.S., Nasiri-Touli, E., Peer, M.: Liquid-liquid equilibrium data in aqueous solutions of propionic and butyric acids with 1-heptanol at T=(298.15, 308.15, and 318.15) K. Korean J. Chem. Eng. 33, 1408–1415 (2016)

    Google Scholar 

  32. Lee, J.Y., Park, Y.: Usage of a deep eutectic solvent based on three compounds for toluene separation. Korean J. Chem. Eng. 35(1), 210–213 (2018). https://doi.org/10.1007/s11814-017-0244-5

    Article  Google Scholar 

  33. Tang, W., Liu, L., Li, G., Zhu, T., Row, K.H.: Optimal separation of phenol from model oils by forming deep eutectic solvents with quaternary ammonium salts. Korean J. Chem. Eng. 34(3), 814–821 (2017). https://doi.org/10.1007/s11814-016-0316-y

    Article  Google Scholar 

  34. Oliveira, F.S., Pereiro, A.B., Rebelo, L.P.N., Marrucho, I.M.: Deep eutectic solvents as extraction media for azeotropic mixtures. Green Chem. 15, 1326 (2013)

    Article  Google Scholar 

  35. Simić, Z., Kijevčanin, M., Radović, I.: Liquid-liquid equilibrium of the ternary water solutions system in separation processes, 34. Procesing, Novi Sad, Serbia, June 3-4.2021, Book of abstract, 141–144, ISBN: 978-86-85535-08-6

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support received from the Research Fund of Ministry of Education, Science and Technological of the Republic of Serbia Development (Contract No. 451–03-68/2022–14/200135)), the Faculty of Technology and Metallurgy, University of Belgrade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Simić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simić, Z., Radović, I., Kijevčanin, M. (2023). Experimental Determination of Liquid-Liquid Equilibrium Data on Ternary Water Systems. In: Mitrovic, N., Mladenovic, G., Mitrovic, A. (eds) Experimental Research and Numerical Simulation in Applied Sciences. CNNTech 2022. Lecture Notes in Networks and Systems, vol 564. Springer, Cham. https://doi.org/10.1007/978-3-031-19499-3_10

Download citation

Publish with us

Policies and ethics

Navigation