Self-Assembly, Entropy Forces, and Kelvin Equation

  • Chapter
  • First Online:
Self-Assembled Water Chains
  • 121 Accesses

Abstract

Historically new innovative tools always provide new opportunities to reveal new secrets of Mother Nature. An atomic force microscope (AFM) is such an innovative tool that allows one to study the local structures and properties of material at molecular levels, which may be difficult to study by classical ensemble average techniques such as optical microscopes. For this reason, since its invention, AFM has been one of the most important tools that lead current nanoscience and nanotechnology in many diverse areas including physics, chemistry, and biology. In this chapter, for the analysis of the AFM data, some basic theoretical models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Hu, X. D. **ao, M. Salmeron, Scanning Polarization Force Microscopy: A Technique for Imaging Liquids and Weakly adsorbed Layers, Appl. Phys. Lett. 67 (4), 476 (1995)

    Article  ADS  Google Scholar 

  2. Xu, L.; Lio, A.; Hu, J.; Ogletree, D. F.; Salmeron, M. Wetting and capillary phenomena of water on mica, J. Phys. Chem. B 1998, 102, 540–548.

    Article  Google Scholar 

  3. K. Chiba, R. Ohmori, H. Tanigawa, T. Yoneoka, and S. Tanaka, H2O trap** on various materials studied by AFM and XPS, Fusion Eng. Des. 49, 791–797 (2000).

    Article  Google Scholar 

  4. Z. Liu, Z. Li, H. Zhou, G. Wei, Y. Song, L. Wang, Observation of the mica surface by atomic force microscopy, Micron 36, 525–531 (2005).

    Article  Google Scholar 

  5. B. I. Kim, J. A. Rasmussen, and E. J. Kim, Large oscillatory forces generated by interfacial water under lateral modulation between two hydrophilic surfaces, Appl. Phys. Lett. 99, 201902 (2011).

    Article  ADS  Google Scholar 

  6. S. Pal, N. B. Sankaran, and A. Samanta Structure of a Self-Assembled Chain of Water Molecules in a Crystal Host Angew. Chem. Int. Ed. 2003, 42, 1741–1743

    Article  Google Scholar 

  7. Baciou, L., and H. Michel. 1995. Interruption of the water chain in the reaction center from Rb. sphaeroides reduces the rates of the proton uptake and of the second electron transfer to QB. Biochemistry. 34: 7967–7972.

    Article  Google Scholar 

  8. Pomes R and Roux B. Molecular Mechanism of H+ Conduction in the Single-File Water Chain of the Gramicidin Channel Biophys J 2002, 82, 2304–2316.

    Google Scholar 

  9. Jones, R. A. L. Soft Condensed Matter. New York, USA: Oxford University Press, 2002.

    Google Scholar 

  10. J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed. (Academic Press, Inc., San Diego, CA, (1991).

    Google Scholar 

  11. P. Nelson, Biological Physics. W.H. Freeman & Co., New York, (2008).

    Google Scholar 

  12. S. Kwon, B. Kim, S. An, W. Lee, H. Kwak, and W. Jhe, Sci. Rep 8, 8462 (2018).

    Article  ADS  Google Scholar 

  13. M. V. Vitorino, A. Vieira, C. A. Marques, and M. S. Rodrigues, Sci. Rep. 8, 13848 (2018).

    Article  ADS  Google Scholar 

  14. R. C. Major, J. E. Houston, M. J. McGrath, J. I. Siepmann, and X.-Y. Zhu, Phys, Rev, Lett. 96, 177803 (2006)

    Article  Google Scholar 

  15. J. Freund, J. Halbritter and J. K. H. Horber, Microsc. Res. Technol. 44, 327 (1999).

    Article  Google Scholar 

  16. H. J. Butt and M. Kappl, Normal Capillary Forces, Adv. Colloid Interface Sci. 146, 48 (2009).

    Article  Google Scholar 

  17. A. Marin, J. Warbrick, and A. Cammarata, Physical Pharmacy 3rd Ed. Lea & Febiger, Philadelphia (1983)

    Google Scholar 

  18. Kim, B. I.; Boehm, R. D.; Bonander, J. R. Direct observation of self-assembled chain-like water structures in a nanoscopic water meniscus, J. Chem. Phys. 2013, 139, 054701–7.

    Article  ADS  Google Scholar 

  19. Phillips, R.; Kondev, J.; Theriot, J. Physical Biology of the Cell, Garland Science, New York, (2009).

    Google Scholar 

  20. B. I. Kim, R. D. Boehm, and H. Agrusa, Coil-to-Bridge Transitions of Self-Assembled Chain-like Water Observed in a Nanoscopic Meniscus, Langmuir, 38, 4538−4546 (2022).

    Article  Google Scholar 

  21. H. J. Butt and M. Kappl, Normal Capillary Forces, Adv. Colloid Interface Sci. 146, 48 (2009).

    Article  Google Scholar 

  22. Andrienko D., Patricio P., and Vinogradova O. I., Capillary bridging and long-range attractive forces in a mean-field approach, J. Chem. Phys. 121, 4414–4423 (2004)

    Article  ADS  Google Scholar 

  23. E. Barthel, X. Y. Lin and J. L. Loubet, Adhesion Energy Measurements in the Presence of Adsorbed Liquid Using a Rigid Surface Force Apparatus, J. Colloid Interface Sci. 177, 401 (1996).

    Google Scholar 

  24. S. Biggs, R. G. Cain, R.R. Dagastine, N. W. Page, Direct measurements of the adhesion between a glass particle and a glass surface in a humid atmosphere, J. Adhes. Sci. Technol. 16, 869 (2002).

    Article  Google Scholar 

  25. B. L. Weeks, M. W. Vaughn, and J. J. DeYoreo, Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy, Langmuir 21, 8096–8098 (2005).

    Google Scholar 

  26. M. Schenk, M. Futing, and R. Reichelt, Direct visualization of the dynamic behavior of a water meniscus by scanning electron microscopy J. Appl. Phys. 84, 4880–4884 (1998).

    Google Scholar 

  27. B. I. Kim, J. R. Bonander, and J. A. Rasmussen, Simultaneous measurement of normal and frictional forces using a cantilever-based optical interfacial force microscope, Rev. Sci. Instrum. 82, 053711 (2011).

    Google Scholar 

  28. Kim, S.; Kim, D.; Kim, J.; An, S.; Jhe, W. Direct Evidence for Curvature-Dependent Surface Tension in Capillary Condensation: Kelvin Equation at Molecular Scale Phys. Rev. X 2018, 8, 041046–14.

    Google Scholar 

  29. Q. Yang, P. Z. Sun, L. Fumagalli, Y. V. Stebunov, S. J. Haigh, Z. W. Zhou, I. V. Grigorieva, F. C. Wang, and A. K. Geim, Capillary condensation under atomic-scale confinement, Nature 588, 250 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, B.I. (2023). Self-Assembly, Entropy Forces, and Kelvin Equation. In: Self-Assembled Water Chains. Springer, Cham. https://doi.org/10.1007/978-3-031-19087-2_2

Download citation

Publish with us

Policies and ethics

Navigation