Image Magnification Network for Vessel Segmentation in OCTA Images

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13537))

Included in the following conference series:

Abstract

Optical coherence tomography angiography (OCTA) is a novel non-invasive imaging modality that allows micron-level resolution to visualize the retinal microvasculature. The retinal vessel segmentation in OCTA images is still an open problem, and especially the thin and dense structure of the capillary plexus is an important challenge of this problem. In this work, we propose a novel image magnification network (IMN) for vessel segmentation in OCTA images. Contrary to the U-Net structure with a down-sampling encoder and up-sampling decoder, the proposed IMN adopts the design of up-sampling encoding and then down-sampling decoding. This design is to capture more low-level image details to reduce the omission of small structures. The experimental results on three open OCTA datasets show that the proposed IMN with an average dice score of 90.2% achieves the best performance in vessel segmentation of OCTA images. Besides, we also demonstrate the superior performance of IMN in cross-field image vessel segmentation and vessel skeleton extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://datashare.ed.ac.uk/handle/10283/3528.

  2. 2.

    https://ieee-dataport.org/open-access/octa-500.

  3. 3.

    https://imed.nimte.ac.cn/dataofrose.html.

References

  1. Kashani, A.H., et al.: Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog. Retin. Eye Res. 60, 66–100 (2017)

    Article  Google Scholar 

  2. Jia, Y., et al.: Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121(7), 1435–1444 (2014)

    Article  Google Scholar 

  3. Hwang, T.S., et al.: Optical coherence tomography angiography features of diabetic retinopathy. Retina 35(11), 2371–2376 (2015)

    Article  Google Scholar 

  4. Rispoli, M., Savastano, M.C., Lumbroso, B.: Capillary network anomalies in branch retinal vein occlusion on optical coherence tomography angiography. Retina 35, 2332–2338 (2015)

    Article  Google Scholar 

  5. Jia, Y., et al.: Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121(7), 1322–1332 (2014)

    Article  Google Scholar 

  6. Yoon, S.P., et al.: Retinal microvascular and neurodegenerative changes in Alzheimer’s disease and mild cognitive impairment compared with control participants. Ophthalmol. Retin. 3(6), 489–499 (2019)

    Article  Google Scholar 

  7. Lavia, C., et al.: Vessel density of superficial, intermediate, and deep capillary plexuses using optical coherence tomography angiography. Retina 39, 247–258 (2019)

    Article  Google Scholar 

  8. Lee, H., Lee, M., Chung, H., Kim, H.C.: Quantification of retinal vessel tortuosity in diabetic retinopathy using optical coherence tomography angiography. Retina 38, 976–985 (2018)

    Article  Google Scholar 

  9. Huang, P.W., Lee, C.H.: Automatic classification for pathological prostate images based on fractal analysis. IEEE Trans. Med. Imaging 28(7), 1037–1050 (2009)

    Article  Google Scholar 

  10. Gao, S.S., et al.: Compensation for reflectance variation in vessel density quantification by optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 57, 4485–4492 (2016)

    Article  Google Scholar 

  11. Nesper, P.L., et al.: Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 58, BIO307–BIO315 (2017)

    Article  Google Scholar 

  12. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195

    Chapter  Google Scholar 

  13. Soares, J.V.B., et al.: Retinal vessel segmentation using the 2-D Gabor Wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)

    Article  Google Scholar 

  14. Breger, A., Goldbacn, F., Gerendas, B.S., Schmidt-Erfurth, U., Ehler, M.: Blood vessel segmentation in en-face OCTA images: a frequency based method. https://arxiv.org/pdf/2109.06116 (2021)

  15. Li, A., You, J., Du, C., Pan, Y.: Automated segmentation and quantification of OCT angiography for tracking angiogenesis progression. Biomed. Opt. Express 8(12), 5604–5616 (2017)

    Article  Google Scholar 

  16. Annunziata, R., Trucco, E.: Accelerating convolutional sparse coding for curvilinear structures segmentation by refining SCIRD-TS filter banks. IEEE Trans. Med. Imaging 35(11), 2381–2392 (2016)

    Article  Google Scholar 

  17. Prentasic, P., et al.: Segmentation of the foveal microvasculature using deep learning networks. J. Biomed. Opt. 21(7), 075008.1-075008.7 (2016)

    Article  Google Scholar 

  18. Mou, L., et al.: CS-Net: channel and spatial attention network for curvilinear structure segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 721–730. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_80

    Chapter  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Pissas, T., et al.: Deep iterative vessel segmentation in OCT angiography. Biomed. Opt. Express 11(5), 2490–2510 (2020)

    Article  Google Scholar 

  21. Ma, Y., et al.: ROSE: a retinal OCT-angiography vessel segmentation dataset and new model. IEEE Trans. Med. Imaging 40(3), 928–939 (2021)

    Article  Google Scholar 

  22. Li, M., et al.: Image projection network: 3D to 2D image segmentation in OCTA images. IEEE Trans. Med. Imaging 39(11), 3343–3354 (2020)

    Article  Google Scholar 

  23. Giarratano, Y., et al.: Automated segmentation of optical coherence tomography angiography images: benchmark data and clinically relevant metrics. Transl. Vis. Sci. Technol. 9(12), 1–10 (2020)

    Google Scholar 

  24. Li, M., et al.: IPN-V2 and OCTA-500: methodology and dataset for retinal image segmentation. ar**v:2012.07261 (2020)

  25. Gegundez-Arias, M.E., et al.: A function for quality evaluation of retinal vessel segmentations. IEEE Trans. Med. Imaging 31(2), 231–239 (2012)

    Article  Google Scholar 

  26. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)

    Article  Google Scholar 

  27. Bradley, D., Roth, G.: Adaptive thresholding using the integral image. Graph. Tools 12, 13–21 (2007)

    Article  Google Scholar 

  28. **, Q., et al.: DUNet: a deformable network for retinal vessel segmentation. Knowl. Based Syst. 178, 149–162 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by National Natural Science Foundation of China (62172223, 61671242), and the Fundamental Research Funds for the Central Universities (30921013105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Zhang, W., Chen, Q. (2022). Image Magnification Network for Vessel Segmentation in OCTA Images. In: Yu, S., et al. Pattern Recognition and Computer Vision. PRCV 2022. Lecture Notes in Computer Science, vol 13537. Springer, Cham. https://doi.org/10.1007/978-3-031-18916-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18916-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18915-9

  • Online ISBN: 978-3-031-18916-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation