A Non-utilitarian Discrete Choice Model for Preference Aggregation

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2022)

Abstract

We study in this paper a non-utilitarian discrete choice model for preference aggregation. Unlike the Plackett-Luce model, this model is not based on the assignment of utility values to alternatives, but on probabilities \(p_i\) to choose the best alternative (according to a ground truth ranking \(r^*\)) in a subset of i alternatives. We consider \(k\!-\!1\) parameters \(p_i\) (for \(i\!=\!2\) to k) in the model, where k is bounded by the number m of alternatives. We study the application of this model to voting, where we assume that the input is a set of choice functions provided by voters. If \(k\!=\!2\), our model amounts to the model used by Young [25] in his statistical analysis of Condorcet’s voting method, and a maximum likelihood ranking is a consensus ranking for the Kemeny rule [12]. If \(k\!>\!2\), we show that, under some restrictive assumptions about probabilities \(p_i\), the maximum likelihood ranking is a consensus ranking for the k-wise Kemeny rule [10]. In the general case, we provide a characterization result for the maximum likelihood ranking r and probabilities \(p_i\). We propose an exact and a heuristic algorithm to compute both ranking r and probabilities \(p_i\). Numerical tests are presented to assess the efficiency of these algorithms, and measure the model fitness on synthetic and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that this assumption allows the preferences to be cyclic.

  2. 2.

    When the votes are viewed as noisy perceptions of a ground truth ranking \(r^*\), a noise model is the mathematical description of the probabilities of the votes based on \(r^*\).

  3. 3.

    From now on, we use indifferently \(\overrightarrow{p}\) or \(\overrightarrow{\alpha }\), because one vector can be inferred from the other.

  4. 4.

    All algorithms have been implemented in C++, and the tests have been carried out on an Intel Core I5-8250 1.6 GHz processor with 8 GB of RAM.

References

  1. Aleskerov, F.: Arrovian Aggregation Models. Kluwer Academic (1999)

    Google Scholar 

  2. Arrow, K.J.: Social Choice and Individual Values (1951)

    Google Scholar 

  3. Baldiga, K.A., Green, J.R.: Assent-maximizing social choice. Soc. Choice Welfare 40(2), 439–460 (2013). https://doi.org/10.1007/s00355-011-0614-6

    Article  MathSciNet  MATH  Google Scholar 

  4. Caragiannis, I., Procaccia, A.D., Shah, N.: When do noisy votes reveal the truth? ACM Trans. Econ. Comput. (TEAC) 4(3), 1–30 (2016)

    Article  MathSciNet  Google Scholar 

  5. Conitzer, V., Rognlie, M., **a, L.: Preference functions that score rankings and maximum likelihood estimation. In: IJCAI, pp. 109–115 (2009)

    Google Scholar 

  6. Conitzer, V., Sandholm, T.: Common voting rules as maximum likelihood estimators. In: Proceedings of UAI 2005, pp. 145–152 (2005)

    Google Scholar 

  7. Cormack, G.V., Clarke, C.L., Buettcher, S.: Reciprocal rank fusion outperforms condorcet and individual rank learning methods. In: SIGIR, pp. 758–759 (2009)

    Google Scholar 

  8. Drissi-Bakhkhat, M., Truchon, M.: Maximum likelihood approach to vote aggregation with variable probabilities. Soc. Choice Welfare 23(2), 161–185 (2004). https://doi.org/10.1007/s00355-003-0242-x

    Article  MathSciNet  MATH  Google Scholar 

  9. Ehrgott, M.: Multicriteria Optimization, vol. 491. Springer (2005). https://doi.org/10.1007/3-540-27659-9

  10. Gilbert, H., Portoleau, T., Spanjaard, O.: Beyond pairwise comparisons in social choice: a setwise Kemeny aggregation problem. In: AAAI, pp. 1982–1989 (2020)

    Google Scholar 

  11. Kamishima, T.: Nantonac collaborative filtering: recommendation based on order responses. In: SIGKDD, pp. 583–588 (2003)

    Google Scholar 

  12. Kemeny, J.G.: Mathematics without numbers. Daedalus 88(4), 577–591 (1959)

    Google Scholar 

  13. Lu, T., Boutilier, C.: The unavailable candidate model: a decision-theoretic view of social choice. In: Proceedings of EC 2010, pp. 263–274 (2010)

    Google Scholar 

  14. Luce, R.D.: Individual Choice Behavior: A Theoretical analysis. Wiley (1959)

    Google Scholar 

  15. Mallows, C.L.: Non-null ranking models. I. Biometrika 44(1/2), 114–130 (1957)

    Article  MathSciNet  Google Scholar 

  16. Mattei, N., Walsh, T.: Preflib: a library of preference data http://preflib.org. In: ADT 2013, Lecture Notes in Artificial Intelligence, Springer (2013). https://doi.org/10.1007/978-3-642-41575-3_20

  17. Pennock, D.M., Horvitz, E., Giles, C.L., et al.: Social choice theory and recommender systems: analysis of the axiomatic foundations of collaborative filtering. In: AAAI/IAAI, pp. 729–734 (2000)

    Google Scholar 

  18. Plackett, R.L.: The analysis of permutations. Appl. Stat. 24(2), 193–202 (1975)

    Article  MathSciNet  Google Scholar 

  19. Przybylski, A., Klamroth, K., Lacour, R.: A simple and efficient dichotomic search algorithm for multi-objective mixed integer linear programs. ar**v (2019)

    Google Scholar 

  20. Raman, K., Joachims, T.: Methods for ordinal peer grading. In: SIGKDD, pp. 1037–1046 (2014)

    Google Scholar 

  21. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 461–464 (1978)

    Google Scholar 

  22. Sen, A.: The possibility of social choice. Am. Eco. Rev. 89(3), 349–378 (1999)

    Article  Google Scholar 

  23. Soufiani, H.A., Parkes, D.C., **a, L.: Random utility theory for social choice. In: NeurIPS, pp. 126–134, NIPS 2012, Curran Associates Inc. (2012)

    Google Scholar 

  24. **a, L.: Learning and decision-making from rank data. Synth. Lect. Artif. Intell. Mach. Learn. 13(1), 1–159 (2019)

    MATH  Google Scholar 

  25. Young, H.P.: Condorcet’s theory of voting. Am. Polit. Sci. Rev. 82(4), 1231–1244 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge a financial support from the project THEMIS ANR20-CE23-0018 of the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Spanjaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Durand, M., Pascual, F., Spanjaard, O. (2022). A Non-utilitarian Discrete Choice Model for Preference Aggregation. In: Dupin de Saint-Cyr, F., Öztürk-Escoffier, M., Potyka, N. (eds) Scalable Uncertainty Management. SUM 2022. Lecture Notes in Computer Science(), vol 13562. Springer, Cham. https://doi.org/10.1007/978-3-031-18843-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18843-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18842-8

  • Online ISBN: 978-3-031-18843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation