Properties of Nanomaterials

  • Chapter
  • First Online:
Green Nanomaterials as Potential Antimicrobials

Abstract

Atomic and molecular sizes are reaching nanoscale dimensions. All matter may be reduced to its constituent atoms. Due to the growing exposure to nanoparticles, it is essential to analyze the toxicity of NPs-based compounds. Since the physicochemical properties of nanomaterials impact the characteristics of NPs, assessing the physicochemical properties of nanomaterials is more critical than ever. Size-dependent effects may be detected in a more prominent way at the nanoscale. In the 1–10 nm range, the electronic properties of semiconductors are determined by quantum mechanical considerations. Quantum dots are thus characterized as nanospheres with a diameter between one and ten nanometers. The sizes and forms of nanomaterials have a considerable effect on their optical properties; quantum dots are one example. The optical properties of a material are intimately related to its electrical and electronic properties, and they may be altered by altering its shape, surface chemistry, or aggregation state. There is a one-to-one relationship between the particle size and the degree of optical absorption they possess. It is known that the optical properties of semiconductors and a number of metals experience considerable changes as a function of particle size. This is easily seen by the colors of the different nanoparticle solutions. The magnetic properties of the nanostructures are diverse from one another. It is conceivable for the energy of magnetic anisotropy in magnetic nanoparticles to be so low that it induces thermal variation in the magnetization vector, resulting in the phenomenon known as superparamagnetism. Mechanically, nanoparticles vary significantly from microparticles and bulk materials. The basic mechanical properties of NPs, such as their hardness and elastic modulus, will help in the design of NPs for specific applications and the assessment of their functions and action mechanisms. In comparison with microcomposites, copper-based nanocomposites have a very high hardness. The thermal conductivities of metal nanoparticles are substantially higher than those of solid fluids. As a direct result of their improved understanding of the underlying nanostructure of materials, scientists are getting a deeper understanding of the crucial factors that regulate the activity, selectivity, reaction processes, and lifetimes of nanocatalysts. In compared to their bulk counterparts, nanoparticle catalysts exhibit greatly enhanced reactivities, giving them distinctive catalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.S. Murty, P. Shankar, B. Raj, B.B. Rath, J. Murday, Unique Properties of Nanomaterials, in Textbook of Nanoscience and Nanotechnology. ed. by B.S. Murty, P. Shankar, B. Raj, B.B. Rath, J. Murday (Springer, Berlin Heidelberg, Berlin, Heidelberg, 2013), pp.29–65

    Chapter  Google Scholar 

  2. S. Mohan Bhagyaraj, O.S. Oluwafemi, Chapter 1—nanotechnology: the science of the invisible, in Synthesis of Inorganic Nanomaterials, ed. by S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, S. Thomas (Woodhead Publishing, 2018), pp. 1–18

    Google Scholar 

  3. S. Singh, P. Thiyagarajan, K. Mohan Kant, D. Anita, S. Thirupathiah, N. Rama, B. Tiwari, M. Kottaisamy, M.S. Ramachandra Rao, Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano. J. Phys. D: Appl. Phys. 40, 6312–6327 (2007)

    Google Scholar 

  4. K. Kant, S.V. Pemmaraju, K.M. Sivalingam, J. Wu, Distributed Computing and Networking: 11th International Conference, ICDCN 2010, Kolkata, India, January 3–6, 2010, Proceedings (Springer Science & Business Media, 2010)

    Google Scholar 

  5. K. Seshan, Handbook of Thin Film Deposition Techniques Principles, Methods, Equipment and Applications, Second Editon (CRC Press, 2002)

    Google Scholar 

  6. M.A. Gatoo, S. Naseem, M.Y. Arfat, A. Mahmood Dar, K. Qasim, S. Zubair, Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res. Int. 498420 (2014)

    Google Scholar 

  7. S. Thomas, N. Kalarikkal, S.O. Oluwafemi, J. Wu, Nanomaterials for Solar Cell Applications (Elsevier, 2019)

    Google Scholar 

  8. E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583–592 (2006)

    Article  CAS  Google Scholar 

  9. J. Mannix Andrew, X.-F. Zhou, B. Kiraly, D. Wood Joshua, D. Alducin, D. Myers Benjamin, X. Liu, L. Fisher Brandon, U. Santiago, R. Guest Jeffrey, J. Yacaman Miguel, A. Ponce, R. Oganov Artem, C. Hersam Mark, P. Guisinger Nathan, Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015)

    Google Scholar 

  10. R.S. Tomar, A. Jyoti, S. Kaushik, Nanobiotechnology: concepts and applications in health, agriculture, and environment (2020)

    Google Scholar 

  11. A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Article  CAS  Google Scholar 

  12. C.J. Murphy, N.R. Jana, Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 14, 80–82 (2002)

    Article  CAS  Google Scholar 

  13. D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010)

    Article  CAS  Google Scholar 

  14. P.N. Sudha, K. Sangeetha, K. Vijayalakshmi, A. Barhoum, Chapter 12 - Nanomaterials history, classification, unique properties, production and market, in Emerging Applications of Nanoparticles and Architecture Nanostructures. ed. by A. Barhoum, A.S.H. Makhlouf (Elsevier, 2018), pp.341–384

    Chapter  Google Scholar 

  15. S. Baskoutas, A.F. Terzis, Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 99, 013708 (2006)

    Article  Google Scholar 

  16. A.L. Efros, A.L.J.S.P.S. Efros, Interband absorption of light in a semiconductor sphere 16, 772–775 (1982)

    Google Scholar 

  17. Y. Kayanuma, Wannier exciton in microcrystals. Solid State Commun. 59, 405–408 (1986)

    Article  CAS  Google Scholar 

  18. T. Takagahara, Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots. Phys. Rev. B 36, 9293–9296 (1987)

    Article  CAS  Google Scholar 

  19. G. Ramalingam, P. Kathirgamanathan, G. Ravi, T. Elangovan, N. Manivannan, K. Kasinathan, Quantum confinement effect of 2D nanomaterials, in: Quantum Dots-Fundamental and Applications (IntechOpen, 2020)

    Google Scholar 

  20. A.L. González, C. Noguez, J. Beránek, A.S. Barnard, Size, shape, stability, and color of plasmonic silver nanoparticles. J. Phys. Chem. C 118, 9128–9136 (2014)

    Article  Google Scholar 

  21. W. Zou, Z.-J. Du, H.-Q. Li, C. Zhang, Fabrication of carboxyl functionalized CdSe quantum dots via ligands self-assembly and CdSe/epoxy fluorescence nanocomposites. Polymer 52, 1938–1943 (2011)

    Article  CAS  Google Scholar 

  22. C. Lü, C. Guan, Y. Liu, Y. Cheng, B. Yang, PbS/Polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17, 2448–2454 (2005)

    Article  Google Scholar 

  23. W. Zou, Z.-J. Du, H.-Q. Li, C. Zhang, A transparent and luminescent epoxy nanocomposite containing CdSe QDs with amido group-functionalized ligands. J. Mater. Chem. 21, 13276–13282 (2011)

    Article  CAS  Google Scholar 

  24. S. Eustis, M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2006)

    Article  CAS  Google Scholar 

  25. N.G. Khlebtsov, L.A. Dykman, Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transfer 111, 1–35 (2010)

    Article  CAS  Google Scholar 

  26. N.G. Khlebtsov, L.A. Dykman, Plasmonic nanoparticles: fabrication, optical properties, and biomedical applications, in: Handbook of Photonics for Biomedical Science (CRC Press, 2010), pp. 73–122

    Google Scholar 

  27. G. Reiss, A. Hütten, Applications beyond data storage. Nat. Mater. 4, 725–726 (2005)

    Article  CAS  Google Scholar 

  28. D. Faivre, M. Bennet, Magnetic nanoparticles line up. Nature 535, 235–236 (2016)

    Article  CAS  Google Scholar 

  29. G. Priyadarshana, N. Kottegoda, A. Senaratne, A. de Alwis, V. Karunaratne, Synthesis of magnetite nanoparticles by top-down approach from a high purity ore. J. Nanomater. 2015, 317312 (2015)

    Article  Google Scholar 

  30. M. Qi, K. Zhang, S. Li, J. Wu, C. Pham-Huy, X. Diao, D. **ao, H. He, Superparamagnetic Fe3O4 nanoparticles: synthesis by a solvothermal process and functionalization for a magnetic targeted curcumin delivery system. New J. Chem. 40, 4480–4491 (2016)

    Article  CAS  Google Scholar 

  31. W. Wu, Q. He, C. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397 (2008)

    Article  CAS  Google Scholar 

  32. Q. Wu, W.-S. Miao, Y.-D. Zhang, H.-J. Gao, D. Hui, Mechanical properties of nanomaterials: a review. Nanotechnol. Rev. 9, 259–273 (2020)

    Article  CAS  Google Scholar 

  33. D. Guo, G. **e, J. Luo, Mechanical properties of nanoparticles: basics and applications. J. Phys. D Appl. Phys. 47, 013001 (2013)

    Article  Google Scholar 

  34. R. Wagner, R. Moon, J. Pratt, G. Shaw, A. Raman, Uncertainty quantification in nanomechanical measurements using the atomic force microscope. Nanotechnology 22, 455703 (2011)

    Article  Google Scholar 

  35. A. Karimzadeh, M.R. Ayatollahi, A.R. Bushroa, M.K. Herliansyah, Effect of sintering temperature on mechanical and tribological properties of hydroxyapatite measured by nanoindentation and nanoscratch experiments. Ceram. Int. 40, 9159–9164 (2014)

    Article  CAS  Google Scholar 

  36. S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transfer 121, 280–289 (1999)

    Article  CAS  Google Scholar 

  37. C. Cao YunWei, R. **, A. Mirkin Chad, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 297, 1536–1540 (2002)

    Google Scholar 

  38. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014)

    Google Scholar 

  39. Y. Wang, K. Fu**ami, R. Zhang, C. Wan, N. Wang, Y. Ba, K. Koumoto, Interfacial thermal resistance and thermal conductivity in nanograined SrTiO3. Appl. Phys. Express 3, 031101 (2010)

    Article  Google Scholar 

  40. H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, U. Landman, Structural, electronic, and impurity-do** effects in nanoscale chemistry: supported gold nanoclusters. Angew. Chem. Int. Ed. 42, 1297–1300 (2003)

    Article  Google Scholar 

  41. M. Naz, A. Rafiq, M. Ikram, A. Haider, S.O.A. Ahmad, J. Haider, S. Naz, Elimination of dyes by catalytic reduction in the absence of light: a review. J. Mater. Sci. 56, 15572–15608 (2021)

    Article  CAS  Google Scholar 

  42. D. Astruc, Nanoparticles and Catalysis (John Wiley & Sons, 2008)

    Google Scholar 

  43. G.L. Bezemer, J.H. Bitter, H.P.C.E. Kuipers, H. Oosterbeek, J.E. Holewijn, X. Xu, F. Kapteijn, A.J. van Dillen, K.P. de Jong, Cobalt particle size effects in the Fischer−Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 128, 3956–3964 (2006)

    Article  CAS  Google Scholar 

  44. S. Mori, Y. Shitara, Tribochemical activation of gold surface by scratching. Appl. Surf. Sci. 78, 269–273 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haider .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haider, A., Ikram, M., Rafiq, A. (2023). Properties of Nanomaterials. In: Green Nanomaterials as Potential Antimicrobials. Springer, Cham. https://doi.org/10.1007/978-3-031-18720-9_3

Download citation

Publish with us

Policies and ethics

Navigation