Identification and Analytical Approaches

  • Chapter
  • First Online:
Physicochemical Aspects of Metal-Organic Frameworks

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 378 Accesses

Abstract

Metal–organic frameworks (MOFs) are a new class of composite materials in which organic molecules bind to inorganic molecules (usually high-core metal clusters or intermediate metal ions) by bonding coordinates and forming a cage-like framework or structure and have unique features. Therefore, several types of crystalline or flat structural arrangements are feasible and are studied by the X-ray diffraction method (XRD). Energy dispersive X-ray (EDX) analysis is used to determine the atomic makeup of MOFs since they contain both organic and inorganic types of molecules. Numerous techniques, such as Fourier transform infrared spectroscopy (FT-IR) analysis, Dynamic light scattering (DLS), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), etc., are used to examine the functionality following MOF creation. Some of these techniques, which are mostly critical, are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 168.79
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    NH2-H2BDC.

  2. 2.

    Zinc-metal Organic Framework-8.

  3. 3.

    zinc–metal organic framework-8 and silver quantum dot composite.

  4. 4.

    Conventional scanning electron microscopy.

  5. 5.

    Environmental scanning electron microscopy.

  6. 6.

    Low vacuum scanning electron microscopy.

  7. 7.

    Polyaniline.

  8. 8.

    NH2–H2BDC.

References

  1. Baker, M.-J., Trevisan, J., Bassan, P., Bhargava, R., Butler, H.-J., Dorling, K.-M., Fielden, P.-R., Fogarty, S.-W., Fullwood, N.-J., Heys, K.-A., Hughes, C.: Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791 (2014). https://doi.org/10.1038/nprot.2014.110

    Article  Google Scholar 

  2. Griffiths, P.-R.: Fourier transform infrared spectrometry. Science 222, 297–302 (1983). https://doi.org/10.1126/science.6623077

    Article  Google Scholar 

  3. Gnanasekaran, G., Balaguru, S., Arthanareeswaran, G., Das, D.-B.: Removal of hazardous material from wastewater by using metal organic framework (MOF) embedded polymeric membranes. Sep. Sci. Technol. 54, 434–446 (2019). https://doi.org/10.1080/01496395.2018.1508232

    Article  Google Scholar 

  4. Lv, G., Liu, J., **ong, Z., Zhang, Z., Guan, Z.: Selectivity adsorptive mechanism of different nitrophenols on UiO-66 and UiO-66-NH2 in aqueous solution. J. Chem. Eng. Data 61, 3868–3876 (2016). https://doi.org/10.1021/acs.jced.6b00581

    Article  Google Scholar 

  5. Scimeca, M., Bischetti, S., Lamsira, H.-K., Bonfiglio, R., Bonanno, E.: Energy dispersive X-ray (EDX) microanalysis: a powerful tool in biomedical research and diagnosis. Eur. J. Histochem., 62 (2018). https://doi.org/10.4081/ejh.2018.2841

  6. Kalhor, S., Zarei, M., Zolfigol, M.A., Sepehrmansourie, H., Nematollahi, D., Alizadeh, S., Shi, H., Arjomandi, J.: Anodic electrosynthesis of MIL-53 (Al)-N (CH2PO3H2) 2 as a mesoporous catalyst for synthesis of novel (N-methyl-pyrrol)-pyrazolo [3, 4-b] pyridines via a cooperative vinylogous anomeric based oxidation. Sci. Rep. 11, 1–20 (2021). https://doi.org/10.1038/s41598-021-97801-7

    Article  Google Scholar 

  7. Veisi, H., Neyestani, N., Pirhayati, M., Kamangar, S.-A., Lotfi, S., Tamoradi, T., Karmakar, B.: Copper nanoparticle anchored biguanidine-modified Zr-UiO-66 MOFs: a competent heterogeneous and reusable nanocatalyst in Buchwald-Hartwig and Ullmann type coupling reactions. RSC Adv. 11, 22278–22286 (2021). https://doi.org/10.1039/D1RA02634H

    Article  Google Scholar 

  8. Rani, S., Sharma, B., Kapoor, S., Malhotra, R., Varma, R.-S., Dilbaghi, N.: Construction of silver quantum dot immobilized Zn-MOF-8 composite for electrochemical sensing of 2, 4-dinitrotoluene. Appl 9, 4952 (2019). https://doi.org/10.3390/app9224952

    Article  Google Scholar 

  9. Bhattacharjee, S.: DLS and zeta potential–what they are and what they are not? J. Control. Release 235, 337–351 (2016). https://doi.org/10.1016/j.jconrel.2016.06.017

    Article  Google Scholar 

  10. Gholami, M., Hekmat, A., Khazaei, M., Darroudi, M.: OXA-CuS@ UiO-66-NH2 as a drug delivery system for Oxaliplatin to colorectal cancer cells. J. Mater. Sci. Mater. Med. 33, 1–10 (2022). https://doi.org/10.1007/s10856-021-06574-y

    Article  Google Scholar 

  11. Asadevi, H., Prasannakumaran Nair Chandrika Kumari, P., Padmavati Amma, R., Khadar, S.-A., Charivumvasathu Sasi, S., Raghunandan, R.: ZnO@ MOF-5 as a fluorescence “Turn-Off” sensor for ultrasensitive detection as well as probing of copper (II) ions. ACS Omega 7, 13031–13041 (2022).https://doi.org/10.1021/acsomega.2c00416

  12. Goldstein, J.-I., Newbury, D.-E., Echlin, P., Joy, D.-C., Lyman, C.-E., Lifshin, E., Sawyer, L., Michael, J.-R.: Special topics in scanning electron microscopy. In: Scanning Electron Microscopy and X-ray Microanalysis, pp. 195–270. Springer Boston MA (2003). https://doi.org/10.1007/978-1-4615-0215-9_5

  13. Van Dam, T.-J., Sutter, L.-L., Smith, K.-D., Wade, M.-J., Peterson, K.-R.: Guidelines for detection, analysis, and treatment of materials-related distress in concrete pavements. Volume 2, Guidelines description and use. United States. Federal Highway Administration, p 246 (2002)

    Google Scholar 

  14. Li, R., Jiang, Y., Zhao, J., Ramella, D., Peng, Y., Luan, Y.: Development of a Brønsted acid Al-MIL-53 metal–organic framework catalyst and its application in [4+ 2] cycloadditions. RSC Adv. 7, 34591–34597 (2017). https://doi.org/10.1039/C7RA06201J

    Article  Google Scholar 

  15. Khodayari, A., Sohrabnezhad, S.: Fabrication of MIL-53 (Al)/Ag/AgCl plasmonic nanocomposite: an improved metal organic framework based photocatalyst for degradation of some organic pollutants. J. Solid State Chem. 297, 122087 (2021). https://doi.org/10.1016/j.jssc.2021.122087

    Article  Google Scholar 

  16. Lin, R., Ge, L., Diao, H., Rudolph, V., Zhu, Z.: Propylene/propane selective mixed matrix membranes with grape-branched MOF/CNT filler. J. Mater. Chem. 4, 6084–6090 (2016). https://doi.org/10.1039/C5TA10553F

    Article  Google Scholar 

  17. Egerton, R.-F.: Radiation damage to organic and inorganic specimens in the TEM. Micron 119, 72–87 (2019). https://doi.org/10.1016/j.micron.2019.01.005

    Article  Google Scholar 

  18. Kwiecińska, B., Pusz, S., Valentine, B.-J.: Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter. Int. J. Coal Geol. 211, 103203 (2019). https://doi.org/10.1016/j.coal.2019.05.010

    Article  Google Scholar 

  19. Guan, Q., Wang, B., Chai, X., Liu, J., Gu, J., Ning, P.: Comparison of Pd-UiO-66 and Pd-UiO-66-NH2 catalysts performance for phenol hydrogenation in aqueous medium. Fuel 205, 130–141 (2017). https://doi.org/10.1016/j.fuel.2017.05.029

    Article  Google Scholar 

  20. Olaniyan, B., Saha, B.: Comparison of catalytic activity of ZIF-8 and Zr/ZIF-8 for greener synthesis of chloromethyl ethylene carbonate by CO2 utilization. Energies 13, 521 (2020). https://doi.org/10.3390/en13030521

    Article  Google Scholar 

  21. Wu, C., Liu, Q., Chen, R., Liu, J., Zhang, H., Li, R., Takahashi, K., Liu, P., Wang, J.: Fabrication of ZIF-8@ SiO2 micro/nano hierarchical superhydrophobic surface on AZ31 magnesium alloy with impressive corrosion resistance and abrasion resistance. ACS Appl. Mater. Interfaces 9, 11106–11115 (2017). https://doi.org/10.1021/acsami.6b16848

    Article  Google Scholar 

  22. Cho, E.H., Lyu, Q., Lin, L.-C.: Computational discovery of nanoporous materials for energy-and environment-related applications. Mol. Simul. 45, 1122–1147 (2019). https://doi.org/10.1080/08927022.2019.1626990

    Article  Google Scholar 

  23. Naderi, M.: Surface area: brunauer–emmett–teller (BET). Filtr. Sep., 585–608 (2015). https://doi.org/10.1016/B978-0-12-384746-1.00014-8

  24. Rowsell, J.-L., Yaghi, O.-M.: Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal− organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006). https://doi.org/10.1021/ja056639q

    Article  Google Scholar 

  25. Ambroz, F., Macdonald, T.-J., Martis, V., Parkin, I.-P.: Evaluation of the BET theory for the characterization of Meso and microporous MOFs. Small Methods 2, 1800173 (2018). https://doi.org/10.1002/smtd.201800173

    Article  Google Scholar 

  26. Qi, Y., Luan, Y., Peng, X., Yang, M., Hou, J., Wang, G.: Design and synthesis of an Au@ MIL-53 (NH2) catalyst for a one-pot aerobic oxidation/knoevenagel condensation reaction. Eur. J. Inorg. Chem. 2015, 5099–5105 (2015). https://doi.org/10.1002/ejic.201500808

    Article  Google Scholar 

  27. Nandi, S., Reinsch, H., Banesh, S., Stock, N., Trivedi, V., Biswas, S.: Rapid and highly sensitive detection of extracellular and intracellular H 2 S by an azide-functionalized Al (III)-based metal–organic framework. Dalton Trans. 46, 12856–12864 (2017). https://doi.org/10.1039/C7DT02293J

    Article  Google Scholar 

  28. Duan, J., Li, Y., Pan, Y., Behera, N., **, W.: Metal–organic framework nanosheets: an emerging family of multifunctional 2D materials. Coord. Chem. Rev. 395, 25–45 (2019). https://doi.org/10.1016/j.ccr.2019.05.018

    Article  Google Scholar 

  29. Trickett, C.-A., Gagnon, K.-J., Lee, S., Gándara, F., Bürgi, H.-B., Yaghi, O.-M.: Definitive molecular level characterization of defects in UiO-66 crystals. Angew. Chem. Int. Ed. 54, 11162–11167 (2015). https://doi.org/10.1002/anie.201505461

    Article  Google Scholar 

  30. Embrechts, H., Kriesten, M., Ermer, M., Peukert, W., Hartmann, M., Distaso, M.: In situ Raman and FTIR spectroscopic study on the formation of the isomers MIL-68 (Al) and MIL-53 (Al). RSC Adv. 10, 7336–7348 (2020). https://doi.org/10.1039/C9RA09968A

    Article  Google Scholar 

  31. Olaniyan, B., Saha, B.: Comparison of catalytic activity of ZIF-8 and Zr/ZIF-8 for greener synthesis of chloromethyl ethylene carbonate by CO2 utilization. Energies 13, 3521 (2020). https://doi.org/10.3390/en13030521

    Article  Google Scholar 

  32. Saadatkhah, N., Carillo Garcia, A., Ackermann, S., Leclerc, P., Latifi, M., Samih, S., Patience, G.S., Chaouki, J.: Experimental methods in chemical engineering: thermogravimetric analysis—TGA. Can. J. Chem. Eng. 98, 34–43 (2020). https://doi.org/10.1002/cjce.23673

  33. Samui, A., Sahu, S.-K.: Characterizations of MOFs for biomedical application. In: Metal–Organic Frameworks for Biomedical Applications, pp. 277–295 (2020)https://doi.org/10.1016/B978-0-12-816984-1.00015-9

  34. Shanahan, J., Kissel, D.S., Sullivan, E.: PANI@ UiO-66 and PANI@ UiO-66-NH2 polymer-MOF hybrid composites as tunable semiconducting materials. ACS Omega 5, 6395–6404 (2020). https://doi.org/10.1021/acsomega.9b03834

    Article  Google Scholar 

  35. Schejn, A., Balan, L., Falk, V., Aranda, L., Medjahdi, G., Schneider, R.: Controlling ZIF-8 nano-and microcrystal formation and reactivity through zinc salt variations. CrystEngComm. 16, 4493–4500 (2014). https://doi.org/10.1039/C3CE42485E

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simindokht Zarei-Shokat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zarei-Shokat, S., Forouzandeh-Malati, M., Ansari, F., Dinmohammadi, R. (2023). Identification and Analytical Approaches. In: Maleki, A., Taheri-Ledari, R. (eds) Physicochemical Aspects of Metal-Organic Frameworks. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-18675-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18675-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18674-5

  • Online ISBN: 978-3-031-18675-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation