Anthra-, Benzo-, and Naphthoquinones

  • Chapter
  • First Online:
Natural Secondary Metabolites

Abstract

Natural products represent important drugs since ancient times, nowadays as endless opportunities to find new compounds with pharmacological activities, a great number of new drugs are still derived from natural sources. Quinones and their derivatives have a fundamental role in several applications, i.e., pharmaceutical, medicinal, and food industries. Quinones represent a large class of compounds showing fascinating chemistry: they interact as electron transfer agents with biological targets by the formation of covalent bindings in redox reactions. Quinones constitute an important class of natural and synthetic compounds. A wide variety of synthetic quinones were prepared for develo** structures with pharmacological activities.

Their structure makes them interfere/udergo in chemical transformations. A great interest by the scientific community is given to quinone-based compounds for their challenging structural elements and potential therapeutic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwala N, Rohani L, Hastings G (2022) Experimental and calculated infrared spectra of disubstituted naphthoquinones. Spectrochim Acta A Mol Biomol Spectrosc 2022:120674

    Article  Google Scholar 

  • Ahmadi ES, Tajbakhsh A, Iranshahy M, Asili J, Kretschmer N, Shakeri A, Sahebkar A (2020) Naphthoquinone derivatives isolated from plants: recent advances in biological activity. Mini Rev Med Chem 20(19):2019–2035. https://doi.org/10.2174/1389557520666200818212020

    Article  CAS  PubMed  Google Scholar 

  • Aminin D, Polonik S (2020) 1,4-naphthoquinones: some biological properties and application. Chem Pharm Bull 68(1):46–57. https://doi.org/10.1248/cpb.c19-00911

    Article  Google Scholar 

  • Annisa R, Hendradi E, Yuwono M (2020) Analysis of 1,4 naphthoquinone in the Indonesian medical plant from extract Eleutherine palmifolia (L.) Merr by UHPLC. IOP Conf Ser Earth Environ Sci 456(1):012020

    Article  Google Scholar 

  • Aranda-López Y, López-López L, Castro K, Ponce-Regalado MD, Becerril-Villanueva LE, Girón-Pérez MI, Del Río-Araiza VH, Morales-Montor J (2021) Cysticidal effect of a pure naphthoquinone on Taenia crassiceps cysticerci. Parasitol Res 120(11):3783–3794. https://doi.org/10.1007/s00436-021-07281-x

    Article  PubMed  Google Scholar 

  • Asha A, Suma S (2022) Synthesis, electrochemical and anti-microbial study of 2,5-diamino benzoquinones. J Indian Chem Soc 99:100316

    Article  CAS  Google Scholar 

  • Badary OA, Hamza MS, Tikamdas R (2021) Thymoquinone: a promising natural compound with potential benefits for COVID-19 prevention and cure. Drug Des Devel Ther 15:1819–1833. https://doi.org/10.2147/DDDT.S308863

    Article  PubMed  PubMed Central  Google Scholar 

  • Carcamo-Noriega EN, Sathyamoorthi S, Banerjee S, Gnanamani E, Mendoza-Trujillo M, Mata-Espinosa D, Hernández-Pando R, Veytia-Bucheli JI, Possani LD, Zare RN (2019) 1,4-benzoquinone antimicrobial agents against Staphylococcus aureus and mycobacterium tuberculosis derived from scorpion venom. Proc Natl Acad Sci U S A 116(26):12642–12647. https://doi.org/10.1073/pnas.1812334116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Çiçek SS, Ugolini T, Girreser U (2019) Two-dimensional qNMR of anthraquinones in Frangula alnus (Rhamnus frangula) using surrogate standards and delay time adaption. Anal Chim Acta 1081:131–137. https://doi.org/10.1016/j.aca.2019.06.046

    Article  CAS  PubMed  Google Scholar 

  • Devi SP, Kumaria S, Rao SR, Tandon P (2016) Carnivorous plants as a source of potent bioactive compound: naphthoquinones. Trop Plant Biol 9(4):267–279

    Article  CAS  Google Scholar 

  • Duval J, Pecher V, Poujol M, Lesellier E (2016) Research advances for the extraction, analysis and uses of anthraquinones: a review. Ind Crop Prod 94:812–833

    Article  CAS  Google Scholar 

  • EuroFIR eBASIS (n.d.) Bioactive substances in food information system. Available at: http://ebasis.eurofir.org/Default.asp. Accessed 18 Jan 2022

  • Farooq U, Pan Y, Disasa D, Qi J (2019) Novel anti-aging benzoquinone derivatives from Onosma bracteatum wall. Molecules (Basel, Switzerland) 24(7):1428. https://doi.org/10.3390/molecules24071428

    Article  CAS  PubMed  Google Scholar 

  • Ferraris D, Lapidus R, Truong P et al (2021) Pre-clinical activity of amino-alcohol dimeric naphthoquinones as potential therapeutics for acute myeloid leukemia. Anticancer Agents Med Chem. https://doi.org/10.2174/1871520621666210602131558

  • Gartman JA, Tambar UK (2022) Recent total syntheses of anthraquinone-based natural products. Tetrahedron 105:132501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gecibesler IH, Disli F, Bayindir S, Toprak M, Tufekci AR, Sahin Yaglıoglu A, Altun M, Kocak A, Demirtas I, Adem S (2021) The isolation of secondary metabolites from Rheum ribes L. and the synthesis of new semi-synthetic anthraquinones: isolation, synthesis and biological activity. Food Chem 342:128378. https://doi.org/10.1016/j.foodchem.2020.128378

    Article  CAS  PubMed  Google Scholar 

  • Han Y, van der Heijden R, Lefeber AWM, Erkelens C, Verpoorte R (2002) Biosynthesis of anthraquinones in cell cultures of Cinchona “Robusta” proceeds via the methylerythritol 4-phosphate pathway. Phytochemistry 59:45–55

    Article  CAS  PubMed  Google Scholar 

  • Harry NA, Saranya S, Krishnan KK, Anilkumar G (2017) Recent advances in the chemistry of masked ortho-benzoquinones and their applications in organic synthesis Asian. J Org Chem 6(8):945–966

    CAS  Google Scholar 

  • Hosseini S, Pourmousavi SA, Mahdavi MT, P. (2021) Synthesis, and in vitro biological evaluations of novel naphthoquinone conjugated to aryl triazole acetamide derivatives as potential anti-Alzheimer agents. J Mol Struct 132229

    Google Scholar 

  • Japp FR (1879) LIV. - On the action of organo-zinc compounds on quinones. (Preliminary note). J Chem Soc 35:526–528

    Article  CAS  Google Scholar 

  • Kamo S, Kuramochi K, Tsubaki K (2018) Recent topics in total syntheses of natural dimeric naphthoquinone derivatives. Tetrahedron Lett 59:224–23017

    Article  CAS  Google Scholar 

  • Kiely M, Black LJ, Plumb J, Kroon PA, Hollman PC, Larsen JC, Speijers GJ, Kapsokefalou M, Sheehan D, Gry J, Finglas P, EuroFIR consortium (2010) EuroFIR eBASIS: application for health claims submissions and evaluations. Eur J Clin Nutr 64(Suppl 3):S101–S107. https://doi.org/10.1038/ejcn.2010.219

    Article  PubMed  Google Scholar 

  • Kim G, Lee S-E (2021) Antifungal and antiaflatoxigenic properties of naphthoquinones toward Aspergillus flavus and their mode of inhibitory action on aflatoxin biosynthesis. Food Control 119:107506

    Article  CAS  Google Scholar 

  • Kumagai Y, Shinkai Y, Miura T, Cho AK (2012) The chemical biology of naphthoquinones and its environmental implications. Annu Rev Pharmacol Toxicol 52:221–247. https://doi.org/10.1146/annurev-pharmtox-010611-134517

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jiang JG (2018) Health functions and structure-activity relationships of natural anthraquinones from plants. Food Funct 9:6063–6080

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Shen HY, Shen QX, Cao ZH, Zhang M, Long SY, Wang ZB, Tan JW (2017) A new anthraquinone and a new naphthoquinone from the whole plant of Spermacoce latifolia. J Asian Nat Prod Res 19(9):869–876. https://doi.org/10.1080/10286020.2017.1279609

    Article  CAS  PubMed  Google Scholar 

  • MacMillan F, Hunte C (2010) Quinone binding and catalysis. Biochim Biophys Acta Bioenerg 1797(12):1841

    Article  CAS  Google Scholar 

  • Miao Y, Yanling W, Ying** J, Mengze L, Jixing N, Xue W (2020) Benzoquinone derivatives with antioxidant activity inhibit activated hepatic stellate cells and attenuate liver fibrosis in TAA-induced mice. Chem Biol Interact 317:108945. https://doi.org/10.1016/j.cbi.2020.108945

    Article  CAS  PubMed  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2(5):233–241

    Article  CAS  Google Scholar 

  • Morgan I, Wessjohann LA, Kaluderović GN (2022) In vitro anticancer screening and preliminary mechanistic study of A-ring substituted Anthraquinone derivatives. Cell 11(1):168

    Article  CAS  Google Scholar 

  • Plumb J, Pigat S, Bompola F, Cushen M, Pinchen H, Nørby E, Astley S, Lyons J, Kiely M, Finglas P (2017) eBASIS (bioactive substances in food information systems) and bioactive intakes: major updates of the bioactive compound composition and beneficial bioeffects database and the development of a probabilistic model to assess intakes in Europe. Nutrients 9(4):320. https://doi.org/10.3390/nu9040320

    Article  PubMed  PubMed Central  Google Scholar 

  • Price ER, Johnson SC (2013) Quinones: occurrence, medicinal uses and physiological importance. Nova Science Publishers, Hauppauge, NY, pp 1–182

    Google Scholar 

  • Qin D, **ang B, Zhou X, Qiu S, ** J (2022) Microemulsion as solvent for naphthoquinones extraction from walnut (Juglans mandshurica Maxim) green husk using high voltage electrical discharge. Sep Purif Technol 28115:119983

    Article  Google Scholar 

  • Qiu H-Y, Wang P-F, Lin H-Y, Tang C-Y, Zhu H-L, Yang Y-H (2018) Naphthoquinones: a continuing source for discovery of therapeutic antineoplastic agents. Chem Biol Drug Des 91(3):681–690

    Article  CAS  PubMed  Google Scholar 

  • Radhika S, Saranya S, Harry NA, Anilkumar G (2019) Recent advances and prospects in the chemistry of o-benzoquinones. ChemistrySelect 4(31):9124–913423

    Article  CAS  Google Scholar 

  • Rani R, Narsiman B, Varma RS, Kumar R (2022) Gum-based nanocapsules comprising naphthoquinones enhance the apoptotic and trypanocidal activity against Trypanosoma evansi. Eur J Pharm Sci 171:106118. https://doi.org/10.1016/j.ejps.2022.106118

    Article  CAS  PubMed  Google Scholar 

  • Sahoo PMS, Behera S, Behura R, Acharya A, Biswal D, Suna SK, Sahoo R, Soren RC, Jali BR (2022) A brief review: antibacterial activity of Quinone derivatives. Biointerface Res Appl Chem 12(3):3247–3258

    CAS  Google Scholar 

  • Shakour ZT, Farag MA (2021) Diverse host-associated fungal systems as a dynamic source of novel bioactive anthraquinones in drug discovery: current status and future perspectives. J Adv Res. https://doi.org/10.1016/j.jare.2021.11.007

  • Shi BJ, Zhang WD, Jiang HF, Zhu YY, Chen L, Zha XM, Lu YY, Zhang WM (2016) A new anthraquinone from seed of Cassia obtusifolia. Nat Prod Res 30(1):35–41. https://doi.org/10.1080/14786419.2015.1032280

    Article  CAS  PubMed  Google Scholar 

  • Sies H, Packer L (2004a) Quinones and quinone enzymes: Part A - Preface. Methods Enzymol 378:xv–xvi

    Google Scholar 

  • Sies H, Packer L (2004b) quinones and quinone enzymes: Part B - Preface. Methods Enzymol 382:xv–xvi

    Google Scholar 

  • Silakari P, Priyanka, Piplani P (2020) P-benzoquinone as a privileged scaffold of pharmacological significance: a review. Mini Rev Med Chem 20(16):1586–1609

    Article  CAS  PubMed  Google Scholar 

  • Souto EB, Silva GF, Dias-Ferreira J, Zielinska A, Ventura F, Durazzo A, Lucarini M, Novellino E, Santini A (2020a) Nanopharmaceutics: Part II—Production scales and clinically compliant production methods. Nanomaterials (Basel) 10(3):E455. https://doi.org/10.3390/nano10030455

    Article  CAS  Google Scholar 

  • Souto EB, Silva GF, Dias-Ferreira J, Zielinska A, Ventura F, Durazzo A, Lucarini M, Novellino E, Santini A (2020b) Nanopharmaceutics: Part I—Clinical trials legislation and good manufacturing practices (GMP) of nanotherapeutics in the EU. Pharmaceutics 12(2):E146. https://doi.org/10.3390/pharmaceutics12020146

    Article  Google Scholar 

  • Wellington KW (2015) Understanding cancer and the anticancer activities of naphthoquinones: a review. RSC Adv 5(26):20309–20338

    Article  CAS  Google Scholar 

  • Wróbel-Biedrawa D, Grabowska K, Galanty A, Sobolewska D, Żmudzki P, Podolak I (2020) Anti-melanoma potential of two benzoquinone homologues embelin and rapanone - a comparative in vitro study. Toxicol In Vitro 65:104826. https://doi.org/10.1016/j.tiv.2020.104826

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Wang S, Zhang H, Guo W, Lu H, Xu H, Zhan R, Fidan O, Sun L (2021a) Biosynthesis of novel naphthoquinone derivatives in the commonly-used chassis cells Saccharomyces cerevisiae and Escherichia coli. Appl Biochem Microbiol 57:S11–S26

    Article  CAS  PubMed Central  Google Scholar 

  • Wu Q, Er-Bu A, Liang X, Luan S, He C, Yin L, Yin Z, Zou Y, Li L, Song X (2021b) Determination of the main naphthoquinones in Onosma hookeri Clarke. var. longiforum Duthie and its optimization of the ultrasound-assisted extraction using response surface methodology. J Food Sci 86(2):357–365. https://doi.org/10.1111/1750-3841.15460

    Article  CAS  PubMed  Google Scholar 

  • Yeung AWK, Souto EB, Durazzo A, Lucarini M, Novellino E, Tewari D, Wang D, Atanasov AG, Santini A (2020) Big impact of nanoparticles: analysis of the most cited nanopharmaceuticals and nanonutraceuticals research. Curr Res Biotechnol 2:53–63. https://doi.org/10.1016/j.crbiot.2020.04.002

    Article  Google Scholar 

  • Yu N, Ye Q, Nie X, **a C, Meng X (2021) Distribution of 2-tert-butyl-1,4-benzoquinone and its precursor, tert-butylhydroquinone, in typical edible oils and oleaginous foods marketed in Hangzhou City, China. Food Chem 361:130039

    Article  CAS  PubMed  Google Scholar 

  • Zamora R, Hidalgo FJ (2021) Formation of naphthoquinones and anthraquinones by carbonyl-hydroquinone/benzoquinone reactions: a potential route for the origin of 9,10-anthraquinone in tea. Food Chem 354:129530

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Zhang R, Jian R, Zhang L, Zhang MT, **a Y, Luo S (2022) Bio-inspired lanthanum-ortho-quinone catalysis for aerobic alcohol oxidation: semi-quinone anionic radical as redox ligand. Nat Commun 13(1):428. https://doi.org/10.1038/s41467-022-28102-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao PP, Tong JM, Tian YF, Zhang SF (2016) Research progress in pharmacological effects of anthraquinones. J Chengde Med Coll 33:152–155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessandra Durazzo or Massimo Lucarini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durazzo, A., Gabrielli, P., Lucarini, M. (2023). Anthra-, Benzo-, and Naphthoquinones. In: Carocho, M., Heleno, S.A., Barros, L. (eds) Natural Secondary Metabolites. Springer, Cham. https://doi.org/10.1007/978-3-031-18587-8_9

Download citation

Publish with us

Policies and ethics

Navigation