Gum Based Green Nanocomposites and Their Applications

  • Chapter
  • First Online:
Green-Based Nanocomposite Materials and Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Research on biobased polymers has gained prominence to minimize the dependency on conventional petroleum-based polymers. Among the different types of biobased polymers, tree gums are one of the greener materials and are derived from a variety of tree genera. They fall into three categories based on their origin: plant exudate gums, microbial gums, and seed gums. Gums are abundant, cheap, harmless, biodegradable, and biocompatible. Gum nanocomposites are used in various industries, including packaging, tissue engineering, medicine delivery, and environmental applications. This chapter gives a state-of-the-art overview of gum-based nanocomposites and discusses how they may be used in various fields. First, various tree gums (Arabic, karaya, tragacanth, ghatti, and kondagogu), their chemical structure, and respective properties will be discussed. Gum nanocomposites with metal, metal oxide, and carbon based nanomaterials will then be described for their applications in a multifaceted arena, to deliver a milieu for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baranwal, J., Barse, B., Fais, A., Delogu, G.L., Kumar, A.: Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers (Basel, Switz.), 14, 983 (2022). https://doi.org/10.3390/polym14050983

  2. Hernandez, N., Williams, R.C., Cochran, E.W.: The battle for the “green” polymer. Different approaches for biopolymer synthesis: bioadvantaged versus bioreplacement. Org. Biomol. Chem. 12, 2834–2849 (2014). https://doi.org/10.1039/c3ob42339e

  3. Thakur, S., Karak, N.: Castor oil-based hyperbranched polyurethanes as advanced surface coating materials. Prog. Org. Coat. 76, 157–164 (2013). https://doi.org/10.1016/j.porgcoat.2012.09.001

    Article  CAS  Google Scholar 

  4. Babu, R.P., O’Connor, K., Seeram, R.: Current progress on bio-based polymers and their future trends. Prog. Biomater. 2, 8 (2013). https://doi.org/10.1186/2194-0517-2-8

    Article  Google Scholar 

  5. Zare, N.E., Makvandi, P., Tay, F.R.: Recent progress in the industrial and biomedical applications of tragacanth gum: a review. Carbohydr. Polym. 212, 450–467 (2019). https://doi.org/10.1016/j.carbpol.2019.02.076

    Article  CAS  Google Scholar 

  6. Padil, V.V.T., Wacławek, S., Černík, M., Varma, R.S.: Tree gum-based renewable materials: sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol. Adv. 36, 1984–2016 (2018). https://doi.org/10.1016/j.biotechadv.2018.08.008

    Article  CAS  Google Scholar 

  7. Zare, N.E., Makvandi, P., Borzacchiello, A., Tay, F.R., Ashtari, B., Padil, V.V.T.: Antimicrobial gum bio-based nanocomposites and their industrial and biomedical applications. Chem. Comm. 55, 14871–14885 (2019). https://doi.org/10.1039/C9CC08207G

    Article  Google Scholar 

  8. Anderson, D.M.W., Wang, W.: Composition of the gum from Combretum paniculatum and four other gums which are not permitted food additives. Phytochemistry 29, 1193–1195 (1990). https://doi.org/10.1016/0031-9422(90)85427-H

    Article  CAS  Google Scholar 

  9. Anderson, D.M.W., Wei**, W.: Gum arabic (Acacia senegal) from Uganda: characteristic N.M.R. spectra, amino acid compositions, and gum/soil cationic relationships. Int. Tree Crops J. 7, 167–179 (1992). https://doi.org/10.1080/01435698.1992.9752915

  10. Sanchez, C., Nigen, M., Mejia, T.V., Doco, T., Williams, P., Amine, C.: Acacia gum: history of the future. Food Hydrocoll. 78, 140–160 (2018). https://doi.org/10.1016/j.foodhyd.2017.04.008

    Article  CAS  Google Scholar 

  11. Raikos, V., Duthie, G., Ranawana, V.: Comparing the efficiency of different food-grade emulsifiers to form and stabilise orange oil-in-water beverage emulsions: influence of emulsifier concentration and storage time. Int. J. Food Sci. Technol. 52, 348–358 (2017). https://doi.org/10.1111/ijfs.13286

    Article  CAS  Google Scholar 

  12. Nussinovitch, A.: Plant gum exudates of the world: sources, distribution, properties, and applications. CRC Press (2009). https://doi.org/10.1201/9781420052244

  13. Verbeken, D., Dierckx, S., Dewettinck, K.: Exudate gums: occurrence, production, and applications. Appl. Microbiol. Biotechnol. 63, 10–21 (2003). https://doi.org/10.1007/s00253-003-1354-z

    Article  CAS  Google Scholar 

  14. Tahir, H.E., **aobo, Z., Mahunu, G.K., Arslan, M., Abdalhai, M., Zhihua, L.: Recent developments in gum edible coating applications for fruits and vegetables preservation: a review. Carbohydr. Polym. 224, 115–141 (2019). https://doi.org/10.1016/j.carbpol.2019.115141

    Article  CAS  Google Scholar 

  15. Prasad, N., Thombare, N., Sharma, S.C., Kumar, S.: Production, processing, properties and applications of karaya (Sterculia species) gum. Ind. Crops Prod. 177, 114467 (2022). https://doi.org/10.1016/j.indcrop.2021.114467

    Article  CAS  Google Scholar 

  16. López-Franco, Y., Higuera-Ciapara, I., Goycoolea, F.M., Wang, W.: Other exudates: tragancanth, karaya, mesquite gum and larchwood arabinogalactan. In: Handbook of Hydrocolloids, 2nd Edn., pp. 495–534 (2009). https://doi.org/10.1533/9781845695873.495

  17. Prasad, N., Thombare, N., Sharma, S.C.: Recent development in the medical and industrial applications of gum karaya: a review. Polym. Bull. (2022). https://doi.org/10.1007/s00289-022-04227-w

    Article  Google Scholar 

  18. Castellani, O., Al-Assaf, S., Axelos, M., Phillips, G.O., Anton, M.: Hydrocolloids with emulsifying capacity. Part 2–Adsorption properties at the n-hexadecane–water interface. Food Hydrocoll. 24, 121–130 (2010). https://doi.org/10.1016/j.foodhyd.2009.07.006

  19. Eshghi, S., Karimi, R., Shiri, A.: The novel edible coating based on chitosan and gum ghatti to improve the quality and safety of ‘Rishbaba’ table grape during cold storage. Food Measure 15, 3683–3693 (2021). https://doi.org/10.1007/s11694-021-00944-4

    Article  Google Scholar 

  20. Vinod, V., Sashidhar, R., Sarma, V., Raju, S.S.: Comparative amino acid and fatty acid compositions of edible gums kondagogu (Cochlospermum gossypium) and karaya (Sterculia urens). Food Chem. 123, 57–62 (2010). https://doi.org/10.1016/j.foodchem.2010.03.127

    Article  CAS  Google Scholar 

  21. Singh, B., Sharma, V.: Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Carbohydr. Polym. 101, 928–940 (2014). https://doi.org/10.1016/j.carbpol.2013.10.022

    Article  CAS  Google Scholar 

  22. Nejatian, M., Abbasi, S., Azarikia, F.: Gum Tragacanth: structure, characteristics and applications in foods. Int. J. Biol. Macromol. 160, 846–860 (2020). https://doi.org/10.1016/j.ijbiomac.2020.05.214

    Article  CAS  Google Scholar 

  23. Asghari-Varzaneh, E., Shahedi, M., Shekarchizadeh, H.: Iron microencapsulation in gum tragacanth using solvent evaporation method. Int. J. Biol. Macromol. 103, 640–647 (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.047

    Article  CAS  Google Scholar 

  24. Mallakpour, S., Abdolmaleki, A., Tabesh, F.: Ultrasonic-assisted manufacturing of new hydrogel nanocomposite biosorbent containing calcium carbonate nanoparticles and tragacanth gum for removal of heavy metal. Ultrason. Sonochem. 41, 572–581 (2018). https://doi.org/10.1016/j.ultsonch.2017.10.022

    Article  CAS  Google Scholar 

  25. Mohammadian, M., Sahraei, R., Ghaemy, M.: Synthesis and fabrication of antibacterial hydrogel beads based on modified-gum tragacanth/poly(vinyl alcohol)/Ag0 highly efficient sorbent for hard water softening. Chemosphere 225, 259–269 (2019). https://doi.org/10.1016/j.chemosphere.2019.03.040

    Article  CAS  Google Scholar 

  26. Syed, A.H.I., Jaisankar, V.: An eco-friendly synthesis, characterization and antibacterial applications of novel almond gum—poly(acrylamide) based hydrogel silver nanocomposite. Polym. Testing 62, 154–161 (2017). https://doi.org/10.1016/j.polymertesting.2017.06.021

    Article  CAS  Google Scholar 

  27. Pandey, S., Goswami, G.K., Nanda, K.K.: Nanocomposite based flexible ultrasensitive resistive gas sensor for chemical reactions studies. Sci. Rep. 3, 2082 (2013). https://doi.org/10.1038/srep02082

    Article  Google Scholar 

  28. Sahraei, R., Ghaemy, M.: Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity. Carbohydr. Polym. 157, 823–833 (2017). https://doi.org/10.1016/j.carbpol.2016.10.059

    Article  CAS  Google Scholar 

  29. Rastogi, L., Kora, A.J., Sashidhar, R.B.: Antibacterial effects of gum kondagogu reduced/stabilized silver nanoparticles in combination with various antibiotics: a mechanistic approach. Appl. Nanosci. 5, 535–543 (2015). https://doi.org/10.1007/s13204-014-0347-9

    Article  CAS  Google Scholar 

  30. Rao, K.M., Kumar, A., Krishna, K.S.V., Haider, A., Han, S.S.: Biodegradable tragacanth gum based silver nanocomposite hydrogels and their antibacterial evaluation. J. Polym. Environ. 26, 778–788 (2018). https://doi.org/10.1007/s10924-017-0989-2

    Article  CAS  Google Scholar 

  31. Ranjbar-Mohammadi, M.: Production of cotton fabrics with durable antibacterial property by using gum tragacanth and silver. Int. J. Biol. Macromol. 109, 476–482 (2018). https://doi.org/10.1016/j.ijbiomac.2017.12.093

    Article  CAS  Google Scholar 

  32. Vanaamudan, A., Sadhu, M., Pamidimukkala, P.: Chitosan-Guar gum blend silver nanoparticle bionanocomposite with potential for catalytic degradation of dyes and catalytic reduction of nitrophenol. J. Mol. Liq. 271, 202–208 (2018). https://doi.org/10.1016/j.molliq.2018.08.136

    Article  CAS  Google Scholar 

  33. Bagal-Kestwal, D.R., Kestwal, R.M., Hsieh, W.T., Chiang, B.H.: Chitosan–guar gum–silver nanoparticles hybrid matrix with immobilized enzymes for fabrication of beta-glucan and glucose sensing photometric flow injection system. J. Pharm. Biomed. 88, 571–578 (2014). https://doi.org/10.1016/j.jpba.2013.09.011

    Article  CAS  Google Scholar 

  34. Montazer, M., Keshvari, A., Kahali, P.: Tragacanth gum/nano silver hydrogel on cotton fabric: in-situ synthesis and antibacterial properties. Carbohydr. Polym. 154, 257–266 (2016). https://doi.org/10.1016/j.carbpol.2016.06.084

    Article  CAS  Google Scholar 

  35. Ghosh, A.R., Abdullah, M.F., Das, S., Roy, P., Datta, S., Mukherjee, A.: New guar biopolymer silver nanocomposites for wound healing applications. Biomed Res. Int. 2013, 912458 (2013). https://doi.org/10.1155/2013/912458

    Article  Google Scholar 

  36. Bajpai, S.K., Kumari, M.: A green approach to prepare silver nanoparticles loaded gum acacia/poly(acrylate) hydrogels. Int. J. Biol. Macromol. 80, 177–188 (2015). https://doi.org/10.1016/j.ijbiomac.2015.06.048

    Article  CAS  Google Scholar 

  37. Arfat, Y.A., Ejaz, M., Jacob, H., Ahmed, J.: Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydr. Polym. 157, 65–71 (2017). https://doi.org/10.1016/j.carbpol.2016.09.069

    Article  CAS  Google Scholar 

  38. Rao, K.M., Kumar, A., Haider, A., Han, S.S.: Polysaccharides based antibacterial polyelectrolyte hydrogels with silver nanoparticles. Mater. Lett. 184, 189–192 (2016). https://doi.org/10.1016/j.matlet.2016.08.043

    Article  CAS  Google Scholar 

  39. Balasubramanian, R., Kim, S.S., Lee, J., Lee, J.: Effect of TiO2 on highly elastic, stretchable UV protective nanocomposite films formed by using a combination of k-Carrageenan, xanthan gum and gellan gum. Int. J. Biol. Macromol. 123, 1020–1027 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.151

    Article  CAS  Google Scholar 

  40. Ismail, N.A., Amin, K.A.M., Majid, F.A.A., Razali, M.H.: Gellan gum incorporating titanium dioxide nanoparticles biofilm as wound dressing: physicochemical, mechanical, antibacterial properties and wound healing studies. Mater. Sci. Eng. C. 103, 109770 (2019). https://doi.org/10.1016/j.msec.2019.109770

    Article  CAS  Google Scholar 

  41. Sahithya, K., Das, D., Das, N.: Effective removal of dichlorvos from aqueous solution using biopolymer modified MMT–CuO composites: equilibrium, kinetic and thermodynamic studies. J. Mol. Liq. 211, 821–830 (2015). https://doi.org/10.1016/j.molliq.2015.08.013

    Article  CAS  Google Scholar 

  42. El-Din, N.H.M., Khafaga, M.R., El-Naggar, A.W.M.: Physico-chemical and drug release properties of poly(vinyl alcohol)/gum arabic/TiO2 nanocomposite hydrogels formed by gamma radiation. J. Macromol. Sci., Part A: Pure Appl. Chem. 52, 821–829 (2015). https://doi.org/10.1080/10601325.2015.1067040

  43. Ba-Abbad, M.M., Takriff, M.S., Benamor, A., Mahmoudi, E., Mohammad, A.W.: Arabic gum as green agent for ZnO nanoparticles synthesis: properties, mechanism and antibacterial activity. J. Mater. Sci. Mater. Electron. 28, 12100–12107 (2017). https://doi.org/10.1007/s10854-017-7023-2

    Article  CAS  Google Scholar 

  44. Chopra, M., Bernela, M., Kaur, P., Manuja, A., Kumar, B., Thakur, R.: Alginate/gum acacia bipolymeric nanohydrogels—promising carrier for Zinc oxide nanoparticles. Int. J. Biol. Macromol. 72, 827–833 (2015). https://doi.org/10.1016/j.ijbiomac.2014.09.037

    Article  CAS  Google Scholar 

  45. Ghayempour, S., Montazer, M.: Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric. Ultrason. Sonochem. 34, 458–465 (2017). https://doi.org/10.1016/j.ultsonch.2016.06.019

    Article  CAS  Google Scholar 

  46. Raguvaran, R., Manuja, B.K., Chopra, M., Thakur, R., Anand, T., Kalia, A.: Sodium alginate and gum acacia hydrogels of ZnO nanoparticles show wound healing effect on fibroblast cells. Int. J. Biol. Macromol. 96, 185–191 (2017). https://doi.org/10.1016/j.ijbiomac.2016.12.009

    Article  CAS  Google Scholar 

  47. Santos, A.G., Rocha, G.O., de Andrade, J.B.: Occurrence of the potent mutagens 2-nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles. Sci. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-018-37186-2

    Article  CAS  Google Scholar 

  48. Guadie Assefa, A., Adugna Mesfin, A., Legesse Akele, M.: Microwave-assisted green synthesis of gold nanoparticles using olibanum gum (Boswellia serrate) and its catalytic reduction of 4-Nitrophenol and Hexacyanoferrate (III) by sodium borohydride. J. Clust. Sci. 28, 917–935 (2017). https://doi.org/10.1007/s10876-016-1078-8

    Article  CAS  Google Scholar 

  49. Reddy, G.B., Madhusudhan, A., Ramakrishna, D., Ayodhya, D., Venkatesham, M., Veerabhadram, G.: Green chemistry approach for the synthesis of gold nanoparticles with gum kondagogu: characterization, catalytic and antibacterial activity. J. Nanostruct. Chem. 5, 185–193 (2015). https://doi.org/10.1007/s40097-015-0149-y

    Article  CAS  Google Scholar 

  50. Kora, A.J., Rastogi, L.: Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arabian J. Chem. 11, 1097–1106 (2018). https://doi.org/10.1016/j.arabjc.2015.06.024

    Article  CAS  Google Scholar 

  51. Kora, A.J.: Tree gum stabilised selenium nanoparticles: characterisation and antioxidant activity. IET Nanobiotechnol. 12, 658–662 (2018). https://doi.org/10.1049/iet-nbt.2017.0310

    Article  Google Scholar 

  52. Pathania, D., Katwal, R., Sharma, G., Naushad, M., Khan, M.R., Al-Muhtaseb, A.H.: Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int. J. Biol. Macromol. 87, 366–374 (2016). https://doi.org/10.1016/j.ijbiomac.2016.02.073

    Article  CAS  Google Scholar 

  53. Lustosa, A.K.M.F., De Jesus Oliveira, A.C., Quelemes, P.V., Plácido, A., Da Silva, F.V., Oliveira, I.S.: In situ synthesis of silver nanoparticles in a hydrogel of carboxymethyl cellulose with phthalated-cashew gum as a promising antibacterial and healing agent. Int. J. Mol. Sci. 18, 2399 (2017). https://doi.org/10.3390/ijms18112399

  54. Wahid, F., Zhong, C., Wang, H.S., Hu, X.H., Chu, L.Q.: Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers (Basel, Switz.) 9, 636 (2017). https://doi.org/10.3390/polym9120636

  55. Dudefoi, W., Terrisse, H., Popa, A.F., Gautron, E., Humbert, B., Ropers, M.H.: Evaluation of the content of TiO2 nanoparticles in the coatings of chewing gums. Food Addit. Contam., Part A 35, 211–221 (2018). https://doi.org/10.1080/19440049.2017.1384576

    Article  CAS  Google Scholar 

  56. Santoso, S.P., Angkawijaya, A.E., Bundjaja, V., Hsieh, C.W., Go, A.W., Yuliana, M.: TiO2/guar gum hydrogel composite for adsorption and photodegradation of methylene blue. Int. J. Biol. Macromol. 193, 721–733 (2021). https://doi.org/10.1016/j.ijbiomac.2021.10.044

    Article  CAS  Google Scholar 

  57. Oliveira, R.D., Pscheidt, J., Santos, C.S., Ferreira, R.T., Marciniuk, G., Garcia, J.R.: Electrochemical performance of pH sensor based on LbL films of polyaniline-gum Arabic nanocomposite and graphene oxide. J. Electrochem. Soc. 167, 047505 (2020). https://doi.org/10.1149/1945-7111/ab721d

    Article  CAS  Google Scholar 

  58. Lai, K.C., Lee, L.Y., Hiew, B.Y.Z., Thangalazhy-Gopakumar, S., Gan, S.: Facile synthesis of xanthan biopolymer integrated 3D hierarchical graphene oxide/titanium dioxide composite for adsorptive lead removal in wastewater. Bioresour. Technol. 309, 123296 (2020). https://doi.org/10.1016/j.biortech.2020.123296

    Article  CAS  Google Scholar 

  59. Yadav, I., Nayak, S.K., Rathnam, V.S.S., Banerjee, I., Ray, S.S., Anis, A.: Reinforcing effect of graphene oxide reinforcement on the properties of poly (vinyl alcohol) and carboxymethyl tamarind gum based phase-separated film. J. Mech. Behav. Biomed. Mater. 81, 61–71 (2018). https://doi.org/10.1016/j.jmbbm.2018.02.021

    Article  CAS  Google Scholar 

  60. Choudhary, B., Paul, S.R., Nayak, S.K., Singh, V.K., Anis, A., Pal, K.: Understanding the effect of functionalized carbon nanotubes on the properties of tamarind gum hydrogels. Polym. Bull. 75, 4929–4945 (2018). https://doi.org/10.1007/s00289-018-2300-7

    Article  CAS  Google Scholar 

  61. Najjar, A., Sabri, S., Al-Gaashani, R., Atieh, M.A., Kochkodan, V.: Antibiofouling performance by polyethersulfone membranes cast with oxidized multiwalled carbon nanotubes and arabic gum. Membranes 9, 32 (2019). https://doi.org/10.3390/membranes9020032

    Article  CAS  Google Scholar 

  62. Giri, A., Bhunia, T., Goswami, L., Panda, A.B., Bandyopadhyay, A.: Fabrication of acrylic acid grafted guar gum-multiwalled carbon nanotube hydrophobic membranes for transdermal drug delivery. RSC Adv. 5, 41736–41744 (2015). https://doi.org/10.1039/C5RA03782D

    Article  CAS  Google Scholar 

  63. Gaddam, R.R., Mukherjee, S., Punugupati, N., Vasudevan, D., Patra, C.R., Narayan, R.: Facile synthesis of carbon dot and residual carbon nanobeads: implications for ion sensing, medicinal and biological applications. Mater. Sci. Eng. C. 73, 643–652 (2017). https://doi.org/10.1016/j.msec.2016.12.095

    Article  CAS  Google Scholar 

  64. Padmanabhan, V.P., Kulandaivelu, R., Nellaiappan, S.N.T.S.: New core-shell hydroxyapatite/Gum-Acacia nanocomposites for drug delivery and tissue engineering applications. Mater. Sci. Eng. C. 92, 685–693 (2018). https://doi.org/10.1016/j.msec.2018.07.018

    Article  CAS  Google Scholar 

  65. Dutta, K., Das, B., Mondal, D., Adhikari, A., Rana, D., Chattopadhyay, A.K.: An ex situ approach to fabricating nanosilica reinforced polyacrylamide grafted guar gum nanocomposites as an efficient biomaterial for transdermal drug delivery application. New J. Chem. 41, 9461–9471 (2017). https://doi.org/10.1039/C7NJ01713H

    Article  CAS  Google Scholar 

  66. Murali, R., Thanikaivelan, P., Cheirmadurai, K.: Melatonin in functionalized biomimetic constructs promotes rapid tissue regeneration in Wistar albino rats. J. Mater. Chem. B. 4, 5850–5862 (2016). https://doi.org/10.1039/C6TB01221C

    Article  CAS  Google Scholar 

  67. Horst, M.F., Coral, D.F., van Raap, M.B.F., Alvarez, M., Lassalle, V.: Hybrid nanomaterials based on gum Arabic and magnetite for hyperthermia treatments. Mater. Sci. Eng. C. 74, 443–450 (2017). https://doi.org/10.1016/j.msec.2016.12.035

    Article  CAS  Google Scholar 

  68. Raizaday, A., Yadav, H.K., Kumar, S.H., Kasina, S., Navya, M., Tashi, C.: Development of pH sensitive microparticles of Karaya gum: by response surface methodology. Carbohydr. Polym. 134, 353–363 (2015). https://doi.org/10.1016/j.carbpol.2015.08.002

    Article  CAS  Google Scholar 

  69. Kumar, A., Rao, K.M., Han, S.S.: Development of sodium alginate-xanthan gum based nanocomposite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polym. Test. 63, 214–225 (2017). https://doi.org/10.1016/j.polymertesting.2017.08.030

    Article  CAS  Google Scholar 

  70. Banerjee, S.S., Chen, D.H.: Fast removal of copper ions by gum Arabic modified magnetic nano-adsorbent. J. Hazard. Mater. 147, 792–799 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.079

    Article  CAS  Google Scholar 

  71. Sadeghi, S., Rad, F.A., Moghaddam, A.Z.: A highly selective sorbent for removal of Cr (VI) from aqueous solutions based on Fe3O4/poly (methyl methacrylate) grafted Tragacanth gum nanocomposite: optimization by experimental design. Mater. Sci. Eng. C. 45, 136–145 (2014). https://doi.org/10.1016/j.msec.2014.08.063

    Article  CAS  Google Scholar 

  72. Sashidhar, R., Selvi, S.K., Vinod, V., Kosuri, T., Raju, D., Karuna, R.: Bioprospecting of gum kondagogu (Cochlospermum gossypium) for bioremediation of uranium (VI) from aqueous solution and synthetic nuclear power reactor effluents. J. Environ. Radioact. 148, 33–41 (2015). https://doi.org/10.1016/j.jenvrad.2015.05.016

    Article  CAS  Google Scholar 

  73. Mittal, H., Mishra, S.B.: Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydr. Polym. 101, 1255–1264 (2014). https://doi.org/10.1016/j.carbpol.2013.09.045

    Article  CAS  Google Scholar 

  74. Venkateshaiah, A., Cheong, J.Y., Habel, C., Wacławek, S., Lederer, T., Černík, M.: Tree gum-graphene oxide nanocomposite films as gas barriers. ACS Appl. Nano Mater. 3, 633–640 (2020). https://doi.org/10.1021/acsanm.9b02166

    Article  CAS  Google Scholar 

  75. Janani, N., Zare, E.N., Salimi, F., Makvandi, P.: Antibacterial tragacanth gum-based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging. Carbohydr. Polym. 247, 116678 (2020). https://doi.org/10.1016/j.carbpol.2020.116678

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Thakur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, S. (2023). Gum Based Green Nanocomposites and Their Applications. In: Avalos Belmontes, F., González, F.J., López-Manchado, M.Á. (eds) Green-Based Nanocomposite Materials and Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-18428-4_15

Download citation

Publish with us

Policies and ethics

Navigation