Infinite Impulse Response Peak Filter with Salp Swarm Optimization Technique for Improvement of DVR Reliability

  • Chapter
  • First Online:
Energy and Environmental Aspects of Emerging Technologies for Smart Grid

Abstract

This chapter discusses the reliability aspects of a dynamic voltage restorer (DVR) using an infinite impulse response (IIR) peak filter with linear/nonlinear loads to control voltage sag/swell, voltage sag unbalance, and voltage harmonics. The proposed IIR filter control algorithm is used to estimate the fundamental active and reactive power components of source voltages and estimate the reference load voltages. This chapter uses the Salp Swarm optimization (SS) technique for determining optimized Kp and Ki gains of proposed control for the generation of reference load voltages. This proposed SS optimization technique-based DVR is modeled and simulated using MATLAB R2020a and DVR reliability analysis is performed using Plexim software. The results demonstrate satisfactory performance of the DVR under varying loads and also show improvement in the lifetime of the DVR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han B, Bompard E, Profumo F, **a Q (2014) Paths toward smart energy: a framework for comparison of the EU and China energy policy. IEEE Trans Sustain Energy 5(2):423–433. https://doi.org/10.1109/TSTE.2013.2288937

    Article  Google Scholar 

  2. Liu M, Lee W, Lee LK (2014) Financial opportunities by implementing renewable sources and storage devices for households under ERCOT demand response programs design. IEEE Trans Ind Appl 50(4):2780–2787. https://doi.org/10.1109/IAS.2013.6682483

    Article  Google Scholar 

  3. Salkuti SR (2023) Advanced technologies for energy storage and electric vehicles. Energies 16(5):2312. https://doi.org/10.3390/en16052312

    Article  Google Scholar 

  4. Salkuti SR (2022) Emerging and advanced green energy technologies for sustainable and resilient future grid. Energies 15(18):6667. https://doi.org/10.3390/en15186667

    Article  Google Scholar 

  5. El-Habrouk M, Darwish MK, Mehta P (2000) A survey of active filters and reactive power compensation techniques. In: Proceedings of the 8th international conference on power electronics variable speed drives, pp 7–12. https://doi.org/10.1049/cp:20000211

  6. Moran LA, Fernandez L, Dixon LW, Wallace R (1997) A simple and low-cost control strategy for active power filters connected in cascade. IEEE Trans Ind Electr 44(5):621–629. https://doi.org/10.1109/41.633456

    Article  Google Scholar 

  7. Singh B, Al-Haddad K, Chandra A (1999) A review of active filters for power quality improvement. IEEE Trans Ind Electr 46(5):960–971. https://doi.org/10.1109/41.793345

    Article  Google Scholar 

  8. Chen C, Chen Y (2014) Comparative study of harmonic and inter harmonic estimation methods for stationary and time-varying signals. IEEE Trans Ind Electr 61(1):397–404. https://doi.org/10.1109/TIE.2013.2242419

    Article  Google Scholar 

  9. Limits For Harmonic Current Emissions (2000) International Electrotechnical Commission IEC-61000-3-2

    Google Scholar 

  10. IEEE Std.519 (1992) IEEE recommended practices and requirement for harmonic control on electric power system. IEEE Std.519

    Google Scholar 

  11. Zanchetta P, Sumner M, Marinelli M, Cupertino F (2009) Experimental modeling and control design of shunt active power filters. J Control Eng Pract 17(10):1126–1135. https://doi.org/10.1016/j.conengprac.2009.03.007

    Article  Google Scholar 

  12. Valdez-Fernandez AA, Martinez-Rodriguez PR, Escobar G, Limones-Pozosand CA, Sosa JM (2013) A model-based controller for the cascade H-bridge multilevel converter used as a shunt active filter. IEEE Trans Ind Electron 60(11):5019–5028. https://doi.org/10.1109/TIE.2012.2218558

    Article  Google Scholar 

  13. IEEE Standard (1998) IEEE recommended the practice for evaluating electric power system compatibility with electronic process equipment. IEEE Standard 1346

    Google Scholar 

  14. Puhan PS, Ray PK, Pottapinjara S (2021) Performance analysis of shunt active filter for harmonic compensation under various non-linear loads. Int J Emerg Electr Power Syst 22(1):21–29. https://doi.org/10.1515/ijeeps-2020-0197

    Article  Google Scholar 

  15. Fereidouni A, Masoum MAS, Moghbel M (2015) Power quality improvement using an enhanced network-side-shunt-connected dynamic voltage restorer. Int J Emerg Electr Power Syst 16(5):451–472. https://doi.org/10.1515/ijeeps-2015-0019

    Article  Google Scholar 

  16. Iag A, Popa GN, Dini CM (2017) Investigation of power quality problems at a wood-based panels plant. In: Proceedings of the 10th international symposium on advanced topics in electrical engineering (ATEE), pp 579–584. https://doi.org/10.1109/ATEE.2017.7905111

  17. Tu C, Guo Q, Jiang F, Wang H, Shuai Z (2019) A comprehensive study to mitigate voltage sags and phase jumps using a dynamic voltage restorer. IEEE J Emerg Select Top Power Electr 8(2):1490–1502. https://doi.org/10.1109/JESTPE.2019.2914308

    Article  Google Scholar 

  18. IEEE Std (2014) IEEE recommended practice and requirements for harmonic control in electric power systems, in IEEE Std 519-2014, pp 1–29

    Google Scholar 

  19. Taghikhani MA, Kazemi A (2005) A new phase advanced multiloop control system for dynamic voltage restorer. Int J Emerg Electr Power Syst 3(2):1072. https://doi.org/10.2202/1553-779X.1072

    Article  Google Scholar 

  20. Nielsen JG, Blaabjerg F, Mohan N (2001) Control strategies for dynamic voltage restorer compensating voltage sags with phase jump. In: Sixteenth annual IEEE applied power electronics conference and exposition, pp 1267–1273. https://doi.org/10.1109/APEC.2001.912528

  21. Jauch T, Kara A, Rahmani M, Westermann D (1998) Power quality ensured by dynamic voltage correction. ABB Rev 4:25–36

    Google Scholar 

  22. Vilathgamuwa M, Perera R, Choi S, Tseng K (1999) Control of energy-optimized dynamic voltage restorer. In: Proceedings of the IECON’99, 25th annual conference of the IEEE industrial electronics society, pp 873–878. https://doi.org/10.1109/IECON.1999.816526

  23. Vilathgamuwa DM, Perera AADR, Choi SS (2002) Performance improvement of the dynamic voltage restorer with closed-loop load voltage and current-mode control. IEEE Trans Power Electr 17(5):824–834. https://doi.org/10.1109/TPEL.2002.802189

    Article  Google Scholar 

  24. Somayajula D, Crow ML (2015) An integrated dynamic voltage restorer-ultracapacitor design for improving power quality of the distribution grid. IEEE Trans Sustain Energy 6(2):616–624. https://doi.org/10.1109/TSTE.2015.2402221

    Article  Google Scholar 

  25. Vu P, Dinh N, Hoang N, Nguyen Q, Nguyen D, Tran M (2018) A generalized parameter tuning method of proportional-resonant controllers for dynamic voltage restorers. Int J Power Electr Drive Syst 9(4):1709–1717

    Google Scholar 

  26. Shukl P, Singh B (2019) Grid integration of three-phase single-stage PV system using adaptive laguerre filter based control algorithm under nonideal distribution system. IEEE Trans Ind Appl 55(6):6193–6202. https://doi.org/10.1109/TIA.2019.2931504

    Article  Google Scholar 

  27. Lamo P, López F, Pigazo A, Azcondo FJ (2017) An efficient FPGA implementation of a quadrature signal-generation subsystem in SRF PLLs in single-phase PFCs. IEEE Trans Power Electr 32(5):3959–3969. https://doi.org/10.1109/TPEL.2016.2582534

    Article  Google Scholar 

  28. **ao F, Dong L, Li L, Liao X (2017) A frequency-fixed SOGI-based PLL for single-phase grid-connected converters. IEEE Trans Power Electr 32(3):1713–1719. https://doi.org/10.1109/TPEL.2016.2606623

    Article  Google Scholar 

  29. Hubscher PI, Bermudez JCM (2003) An improved statistical analysis of the least mean fourth (LMF) adaptive algorithm. IEEE Trans Sig Process 51(3):664–671. https://doi.org/10.1109/TSP.2002.808126

    Article  Google Scholar 

  30. Matas J, Martín H, de la Hoz J, Abusorrah A, Al-Turki YA, Al-Hindawi M (2018) A family of gradient descent grid frequency estimators for the SOGI filter. IEEE Trans Power Electron 33(7):5796–5810. https://doi.org/10.1109/TPEL.2017.2748920

    Article  Google Scholar 

  31. Faez K, Kamel M (1994) Image reconstruction from contour data using a back-propogation neural network. In: Proceedings of the international conference on acoustic, speech signal processing, pp 297–300. https://doi.org/10.1109/ICASSP.1994.389473

  32. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  33. Singh B, Shukl P (2018) Control of grid fed PV generation using IIR peak filter in distribution system. Int Conf Elect Electron Comput Eng 12:1–6. https://doi.org/10.1109/UPCON.2018.8597001

    Article  Google Scholar 

  34. Subhash B, Rajagopal V, Salkuti SR (2022) Optimization of controller gains to enhance power quality of standalone wind energy conversion system. Int J Emerg Electr Power Syst 23(1):89–104. https://doi.org/10.1515/ijeeps-2021-0024

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by “Woosong University’s Academic Research Funding—2024”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surender Reddy Salkuti .

Editor information

Editors and Affiliations

Appendix

Appendix

Source voltage = 415 V, fs = 50 Hz, Vdc = 700 V, Rs = 0.02 Ω, Ls = 0.001 H, L = 150 mH, R = 25 Ω, Rf = 4.98 Ω, Cf = 12 μF, Lf = 4.9 mH, Kp1 = 5, KI1 = 4.372, Kp2 = 1.726, KI1 = 4.386, IIR peak filter: Sample time (Ts) = 20 µs, k1 = 2.17, k2 = 1.24, k3 = –2.123, k4 = 0.923.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jampana, B., Veramalla, R., Salkuti, S.R. (2024). Infinite Impulse Response Peak Filter with Salp Swarm Optimization Technique for Improvement of DVR Reliability. In: Salkuti, S.R. (eds) Energy and Environmental Aspects of Emerging Technologies for Smart Grid. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-18389-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18389-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18388-1

  • Online ISBN: 978-3-031-18389-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation