Knapsack Secretary Through Boosting

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13538))

Included in the following conference series:

  • 367 Accesses

Abstract

We revisit the knapsack-secretary problem (Babaioff et al.; APPROX 2007), a generalization of the classic secretary problem in which items have different sizes and multiple items may be selected if their total size does not exceed the capacity B of a knapsack. Previous works show competitive ratios of 1/(10e) (Babaioff et al.), 1/8.06 (Kesselheim et al.; STOC 2014), and 1/6.65 (Albers, Khan, and Ladewig; APPROX 2019) for the general problem but no definitive answers for the achievable competitive ratio; the best known impossibility remains 1/e as inherited from the classic secretary problem. In an effort to make more qualitative progress, we take an orthogonal approach and give definitive answers for special cases.

Our main result is on the 1-2-knapsack secretary problem, the special case in which \(B=2\) and all items have sizes 1 or 2, arguably the simplest meaningful generalization of the secretary problem towards the knapsack secretary problem. Our algorithm is simple: It boosts the value of size-1 items by a factor \(\alpha >1\) and then uses the size-oblivious approach by Albers, Khan, and Ladewig. We show by a nontrivial analysis that this algorithm achieves a competitive ratio of 1/e if and only if \(1.40\lesssim \alpha \le e/(e-1)\approx 1.58\).

Towards understanding the general case, we then consider the case when sizes are 1 and B, and B is large. While it remains unclear if 1/e can be achieved in that case, we show that algorithms based only on the relative ranks of the item values can achieve precisely a competitive ratio of \(1/(e+1)\). To show the impossibility, we use a non-trivial generalization of the factor-revealing linear program for the secretary problem (Buchbinder, Jain, and Singh; IPCO 2010).

Supported in part by the Independent Research Fund Denmark, Natural Sciences, grant DFF-0135-00018B.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albers, S., Khan, A., Ladewig, L.: Best fit bin packing with random order revisited. Algorithmica 83(9), 2833–2858 (2021)

    Article  MathSciNet  Google Scholar 

  2. Albers, S., Khan, A., Ladewig, L.: Improved online algorithms for knapsack and GAP in the random order model. Algorithmica 83(6), 1750–1785 (2021)

    Article  MathSciNet  Google Scholar 

  3. Albers, S., Ladewig, L.: New results for the k-secretary problem. Theor. Comput. Sci. 863, 102–119 (2021)

    Article  MathSciNet  Google Scholar 

  4. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary problem with applications. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) APPROX/RANDOM - 2007. LNCS, vol. 4627, pp. 16–28. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74208-1_2

    Chapter  Google Scholar 

  5. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Matroid secretary problems. J. ACM 65(6), 35:1–35:26 (2018)

    Google Scholar 

  6. Böckenhauer, H.-J., Komm, D., Královic, R., Rossmanith, P.: The online knapsack problem: advice and randomization. Theor. Comput. Sci. 527, 61–72 (2014)

    Article  MathSciNet  Google Scholar 

  7. Boyar, J., Favrholdt, L.M., Larsen, K.S.: Online unit profit knapsack with untrusted predictions. In: Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp. 20:1–20:17 (2022)

    Google Scholar 

  8. Buchbinder, N., Jain, K., Singh, M.: Secretary problems via linear programming. Math. Oper. Res. 39(1), 190–206 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chan, T.-H.H., Chen, F., Jiang, S.H.-C.: Revealing optimal thresholds for generalized secretary problem via continuous LP: impacts on online \(k\)-item auction and bipartite \(k\)-matching with random arrival order. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1169–1188 (2015)

    Google Scholar 

  10. Correa, J.R., Dütting, P., Fischer, F.A., Schewior, K.: Prophet inequalities for independent and identically distributed random variables from an unknown distribution. Math. Oper. Res. 47(2), 1287–1309 (2022)

    Article  MathSciNet  Google Scholar 

  11. Correa, J.R., Dütting, P., Fischer, F.A., Schewior, K., Ziliotto, B.: Streaming algorithms for online selection problems. In: Innovations in Theoretical Computer Science (ITCS), p. 86:1 (2021)

    Google Scholar 

  12. Dinitz, M.: Recent advances on the matroid secretary problem. SIGACT News 44(2), 126–142 (2013)

    Article  MathSciNet  Google Scholar 

  13. Dynkin, E.: The optimum choice of the instant for stop** a Markov process. Soviet Math. Dokl. 4, 627–629 (1963)

    MATH  Google Scholar 

  14. Ezra, T., Feldman, M., Gravin, N., Tang, Z.G.: General graphs are easier than bipartite graphs: tight bounds for secretary matching. In: ACM Conference on Economics and Computation (EC), pp. 1148–1177 (2022)

    Google Scholar 

  15. Feldman, M., Svensson, O., Zenklusen, R.: A simple \(O\)(log log(rank))-competitive algorithm for the matroid secretary problem. Math. Oper. Res. 43(2), 638–650 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ferguson, T.S.: Who solved the secretary problem? Stat. Sci. 4(3), 282–289 (1989)

    MathSciNet  MATH  Google Scholar 

  17. Giliberti, J., Karrenbauer, A.: Improved online algorithm for fractional knapsack in the random order model. In: Koenemann, J., Peis, B. (eds.) WAOA 2021. LNCS, vol. 12982, pp. 188–205. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92702-8_12

    Chapter  MATH  Google Scholar 

  18. Gupta, A., Singla, S.: Random-order models. In: Roughgarden, T. (ed.) Beyond the Worst-Case Analysis of Algorithms, pp. 234–258. Cambridge University Press (2021)

    Google Scholar 

  19. Hoefer, M., Kodric, B.: Combinatorial secretary problems with ordinal information. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 133:1–133:14 (2017)

    Google Scholar 

  20. Kenyon, C.: Best-fit bin-packing with random order. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 359–364 (1996)

    Google Scholar 

  21. Kesselheim, T., Molinaro, M.: Knapsack secretary with bursty adversary. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 72:1–72:15 (2020)

    Google Scholar 

  22. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: An optimal online algorithm for weighted bipartite matching and extensions to combinatorial auctions. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 589–600. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4_50

    Chapter  Google Scholar 

  23. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: Primal beats dual on online packing LPS in the random-order model. SIAM J. Comput. 47(5), 1939–1964 (2018)

    Article  MathSciNet  Google Scholar 

  24. Kleinberg, R.D.: A multiple-choice secretary algorithm with applications to online auctions. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 630–631 (2005)

    Google Scholar 

  25. Lachish, O.: \({O}(\log \log \rm rank )\) competitive ratio for the matroid secretary problem. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 326–335 (2014)

    Google Scholar 

  26. Lindley, D.: Dynamic programming and decision theory. Appl. Statist. 10, 39–51 (1961)

    Article  MathSciNet  Google Scholar 

  27. Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems. Math. Program. 68, 73–104 (1995)

    Article  MathSciNet  Google Scholar 

  28. Naori, D., Raz, D.: Online multidimensional packing problems in the random-order model. In: International Symposium on Algorithms and Computation (ISAAC), pp. 10:1–10:15 (2019)

    Google Scholar 

  29. Soto, J.A., Turkieltaub, A., Verdugo, V.: Strong algorithms for the ordinal matroid secretary problem. Math. Oper. Res. 46(2), 642–673 (2021)

    Article  MathSciNet  Google Scholar 

  30. Zhou, Y., Chakrabarty, D., Lukose, R.: Budget constrained bidding in keyword auctions and online knapsack problems. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 566–576. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92185-1_63

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Schewior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abels, A., Ladewig, L., Schewior, K., Stinzendörfer, M. (2022). Knapsack Secretary Through Boosting. In: Chalermsook, P., Laekhanukit, B. (eds) Approximation and Online Algorithms. WAOA 2022. Lecture Notes in Computer Science, vol 13538. Springer, Cham. https://doi.org/10.1007/978-3-031-18367-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18367-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18366-9

  • Online ISBN: 978-3-031-18367-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation