Role of Endogenous Ca\(^{2+}\) Buffering and the Readily Releasable Pool on Fast Secretion in Auditory Inner Hair Cells

  • Conference paper
  • First Online:
XLV Mexican Conference on Biomedical Engineering (CNIB 2022)

Abstract

Sensory hair cells, located at the cochlea, convert sound into a depolarizing stimulus that, as a response to an increase in the intracellular Ca\(^{2+}\) concentration, triggers the release of glutamate. Experimental observations have shown that depending on their location in the inner ear, sensory hair cells respond differently to sounds of different frequencies. The origin of this behavior is still a matter of debate but, given the importance of the dynamics of intracellular Ca\(^{2+}\) for the exocytotic response, it has been hypothesized that the availability of endogenous Ca\(^{2+}\) buffers at the active zone, along with the size of the readily releasable pool of glutamate vesicles, could be associated to the frequency-dependent tuning of the exocytotic response. Here, we implemented a computational model of the active zone of a sensory hair cell with the main objective of evaluating the effects of the endogenous Ca\(^{2+}\) buffers and the readily releasable pool on the fast exocytosis of glutamate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gil, A., Segura, J., Pertusa, J., Soria, B.: Monte Carlo simulation of 3-D buffered Ca\(^{2+}\) diffusions in neuroendocrine cells. Biophys J. 78, 13–33 (2000)

    Article  Google Scholar 

  2. Segura, J., Gil, A., Soria, B.: Modeling study of exocytosis in neuroendocrine cells: influence of the geometrical parameters. Biophys. J. 79, 1771–1786 (2000)

    Article  Google Scholar 

  3. Johnson, S., Olt, J., Cho, S., Gersdorff, H., Marcotti, W.: The coupling between Ca\(^{2+}\) channels and the exocytotic Ca\(^{2+}\) sensor at hair cell ribbon synapses varies tonotopically along the mature cochlea. J. Neurosci. 37, 2471–2484 (2017)

    Article  Google Scholar 

  4. Jessica, A.: Soto Bear, Modelado estocástico de la secreción en células ciliadas internas del trayecto auditivo. Universidad Autónoma Metropolitana, Azcapotzalco, Mexico City (2019)

    Google Scholar 

  5. Zampini, V., et al.: Elementary properties of CaV1. 3 Ca2+ channels expressed in mouse cochlear inner hair cells. J. Physiol. 588, 187–199 (2010)

    Google Scholar 

  6. Brandt, A., Khimich, D., Moser, T.: Few CaV1. 3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse. J. Neurosci. 25, 11577–11585 (2005)

    Google Scholar 

  7. Wagner, E., Shin, J.: Mechanisms of hair cell damage and repair. Trends Neurosci. 42, 414–424 (2019)

    Article  Google Scholar 

  8. Patel, S.H., Salvi, J.D., Ó Maoiléidigh, D., Hudspeth. A.J.: Frequency-selective exocytosis by ribbon synapses of hair cells in the bullfrog’s amphibian papilla. J Neurosci. 32, 13433–13438 (2012)

    Google Scholar 

  9. Pangršič, T., et al.: EF-hand protein Ca2+ buffers regulate Ca2+ influx and exocytosis in sensory hair cells. Proc. Natl. Acad. Sci. U. S. A. 112, E1028-37 (2015)

    Article  Google Scholar 

  10. Kujawa, S.G., Liberman, M.C.: Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear. Res. 330(Part B), 191–199 (2015)

    Google Scholar 

  11. Altoé, A., Pulkki, V., Verhulst, S.: Model-based estimation of the frequency tuning of the inner-hair-cell stereocilia from neural tuning curves. J. Acoust. Soc. Am. 141, 4438–4451 (2017)

    Article  Google Scholar 

  12. Lopez-Poveda, E., Eustaquio-Martín, A.: A biophysical model of the inner hair cell: the contribution of potassium currents to peripheral auditory compression. J. Assoc. Res. Otolaryngol. 7, 218–235 (2006)

    Article  Google Scholar 

  13. Nakamura, Y., Reva, M., DiGregorio, D.: Variations in Ca2+ influx can alter chelator-based estimates of Ca2+ channel-synaptic vesicle coupling distance. J. Neurosci. 38, 3971–3987 (2018)

    Article  Google Scholar 

  14. Nakamura, Y.: EGTA can inhibit vesicular release in the nanodomain of single Ca2+ channels. Front. Synaptic Neurosci. 11, 26 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia González-Velez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valverde-Alonzo, C.A., Félix-Martínez, G.J., González-Velez, V., Gil, A. (2023). Role of Endogenous Ca\(^{2+}\) Buffering and the Readily Releasable Pool on Fast Secretion in Auditory Inner Hair Cells. In: Trujillo-Romero, C.J., et al. XLV Mexican Conference on Biomedical Engineering. CNIB 2022. IFMBE Proceedings, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-031-18256-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18256-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18255-6

  • Online ISBN: 978-3-031-18256-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation