Influence of Titanium Nitride Thin Films on the Electrical Properties of Isotype n-TiN/n-Si Heterostructures

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 279))

  • 256 Accesses

Abstract

The conditions for the formation of the energy barrier in isotypic n-TiN/n-Si heterojunctions by the reactive magnetron sputtering method of thin films of titanium nitride on n-Si crystalline substrates have been studied. Based on the analysis of C-V-characteristics, the role of states localized at the n-TiN/n-Si boundary in the formation of the energy barrier is clarified and its parameters are determined. A model of the energy diagram of the n-TiN/n-Si heterojunction, which well describes the experimental electrophysical phenomena, is proposed. The mechanisms of electron motion through the energy barrier of the heterojunction at forward and reverse biases are analyzed according to the temperature dependences of the I-V characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mohan T, Baiju KG, Murali B, Kumaresan D (2018) Titanium nitride blended graphene nanoplatelets as low-cost and efficient composite counter electrode for dye-sensitized solar cells. In: 2018 IEEE international conference on system, computation, automation and networking (ICSCA), IEEE, Pondicherry, pp 1–5. https://doi.org/10.1109/ICSCAN.2018.8541145

  2. Khezripour Z, Mahani FF, Mokhtari A (2018) Performance improvement of ultrathin organic solar cells utilizing light-trap** aluminum-titanium nitride nanosquare arrays. Opt Mater 84:651–657. https://doi.org/10.1016/j.optmat.2018.07.073

    Article  ADS  Google Scholar 

  3. Lu Z, Liu X, Hou G, Chen J, Zhu T, Xu J, Chen K (2020) Do**-free titanium nitride carrier selective contacts for efficient organic-inorganic hybrid solar cells. ACS Appl Energ Mater 3:9208–9215. https://doi.org/10.1021/acsaem.0c01517

    Article  Google Scholar 

  4. Khalifa AE, Swillam MA (2014) Plasmonic silicon solar cells using titanium nitride: a comparative study. J Nanophoton 8:084098. https://doi.org/10.1117/1.JNP.8.084098

    Article  Google Scholar 

  5. Solovan MM, Brus VV, Maistruk EV, Maryanchuk PD (2014) Electrical and optical properties of TiN thin films. Inorg Mater 50:46–51. https://doi.org/10.1134/S0020168514010178

    Article  Google Scholar 

  6. Jeon H, Lee J-W, Kim Y-D, Kim D-S, Yi K-S (2000) Study on the characteristics of TiN thin film deposited by the atomic layer chemical vapor deposition method. J Vac Sci Technol A: Vac Surf Films 18:1595–1598. https://doi.org/10.1116/1.582391

    Article  ADS  Google Scholar 

  7. Solovan MM, Brus VV, Maryanchuk PD, Ilashchuk MI, Rappich J, Nickel N, Abashin SL (2014) Fabrication and characterization of anisotype heterojunctions n-TiN/p-CdTe. Semicond Sci Technol 29:015007. https://doi.org/10.1088/0268-1242/29/1/015007

    Article  ADS  Google Scholar 

  8. Didden A, Battjes H, Machunze R, Dam B, van de Krol R (2011) Titanium nitride: a new Ohmic contact material for n-type CdS. J Appl Phys 110:033717. https://doi.org/10.1063/1.3615946

    Article  ADS  Google Scholar 

  9. Matenoglou GM, Koutsokeras LE, Patsalas P (2009) Plasma energy and work function of conducting transition metal nitrides for electronic applications. Appl Phys Lett 94:152108. https://doi.org/10.1063/1.3119694

    Article  ADS  Google Scholar 

  10. Ishii S, Shinde SL, Jevasuwan W, Fukata N, Nagao T (2016) Hot electron excitation from titanium nitride using visible light. ACS Photonics 3:1552–1557. https://doi.org/10.1021/acsphotonics.6b00360

    Article  Google Scholar 

  11. Naldoni A, Guler U, Wang Z, Marelli M, Malara F, Meng X, Besteiro LV, Govorov AO, Kildishev AV, Boltasseva A, Shalaev VM (2017) Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv Opt Mater 5:1601031. https://doi.org/10.1002/adom.201601031

    Article  Google Scholar 

  12. Yang X, Liu W, De Bastiani M, Allen T, Kang J, Xu H, Aydin E, Xu L, Bi Q, Dang H, AlHabshi E, Kotsovos K, AlSaggaf A, Gereige I, Wan Y, Peng J, Samundsett C, Cuevas A, De Wolf S (2019) Dual-function electron-conductive, hole-blocking titanium nitride contacts for efficient silicon solar cells. Joule 3:1314–1327. https://doi.org/10.1016/j.joule.2019.03.008

    Article  Google Scholar 

  13. Lima L, Diniz JA, Doi I, Fo JG (2012) Titanium nitride as electrode for MOS technology and Schottky diode: alternative extraction method of titanium nitride work function. Microelectron Eng 92:86–90. https://doi.org/10.1016/j.mee.2011.04.059

    Article  Google Scholar 

  14. Shinde SL, Ishii S, Nagao T (2019) Sub-bandgap photodetection from titanium nitride/germanium heterostructure. ACS Appl Mater Interfaces 11:21965–21972. https://doi.org/10.1021/acsami.9b01372

    Article  Google Scholar 

  15. Wu HD, Huang W, Lu WF, Tang RF, Li C, Lai HK, Chen SY, Xue CL (2013) Ohmic contact to n-type Ge with compositional Ti nitride. Appl Surf Sci 284:877–880. https://doi.org/10.1016/j.apsusc.2013.08.028

    Article  ADS  Google Scholar 

  16. Solovan MM, Brus VV, Maryanchuk PD (2013) Electrical and photoelectric properties of anisotype n-TiN/p-Si heterojunctions. Semiconductors 47:1174–1179. https://doi.org/10.1134/S1063782613090248

    Article  ADS  Google Scholar 

  17. Gosciniak J, Atar FB, Corbett B, Rasras M (2019) CMOS-compatible titanium nitride for on-chip plasmonic schottky photodetectors. ACS Omega 4:17223–17229. https://doi.org/10.1021/acsomega.9b01705

    Article  Google Scholar 

  18. Solovan MN, Brus VV, Maryanchuk PD (2014) Specific features of the recombination loss of the photocurrent in n-TiN/p-Si anisotype heterojunctions. Semiconductors 48:1504–1506. https://doi.org/10.1134/S106378261411027X

    Article  ADS  Google Scholar 

  19. Gosciniak J, Atar FB, Corbett B, Rasras M (2019) Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride. Sci Rep 9:6048. https://doi.org/10.1038/s41598-019-42663-3

    Article  ADS  Google Scholar 

  20. Solovan MN, Brus VV, Maryanchuk PD (2014) Isotype surface-barrier n-TiN/n-Si heterostructure. Semiconductors 48:219–223. https://doi.org/10.1134/S1063782614020274

    Article  ADS  Google Scholar 

  21. Solovan MN, Mostovyi AI, Brus VV, Maistruk EV, Maryanchuk PD (2016) Electrical and photoelectric properties of n-TiN/p-Hg3In2Te6 heterostructures. Semiconductors 50:1020–1024. https://doi.org/10.1134/S1063782616080236

    Article  ADS  Google Scholar 

  22. Orletsky IG, Ilashchuk MI, Brus VV, Marianchuk PD, Solovan MM, Kovalyuk ZD (2016) Electrical and photoelectric properties of the TiN/p-InSe Heterojunction. Semiconductors 50:334–338. https://doi.org/10.1134/S1063782616030167

    Article  ADS  Google Scholar 

  23. Orlets' kyi IG, Ilashchuk MI, Maistruk EV, Parkhomenko HP, Maryanchuk PD (2021) Electrical properties and energy parameters of photosensitive n-Mn2O3/n-CdZnTe heterostructures. Ukrainian J Phys 66, 792. https://doi.org/10.15407/ujpe66.9.792

  24. Koziarskyi IP, Maistruk EV, Orletsky IG, Ilashchuk MI, Koziarskyi DP, Marianchuk PD, Solovan MM, Ulyanytsky KS (2020) Influence of properties of hematite films on electrical characteristics of isotype heterojunctions Fe2O3/n-CdTe. Semicond Sci Technol 35:025018. https://doi.org/10.1088/1361-6641/ab6107

    Article  ADS  Google Scholar 

  25. Sharma BL, Purohit RK (1974) Semiconductor heterojunctions (Pergamon Press, 1974) [ISBN:9781483280868]

    Google Scholar 

  26. Fahrenbruch AL, Bube RH (1983) Fundamentals of Solar Cells (Academic Press, 1983) [ISBN: 9780323145381]

    Google Scholar 

  27. Handbook of photovoltaic science and engineering 2011 Edited by A.Luque and S. Hegedus. (2nd ed. John Wiley & Sons, Ltd.)

    Google Scholar 

  28. Sze SM, Kwok KN (2006) Physics of semiconductor devices (Wiley, 2006) [ISBN: 9780471143239]

    Google Scholar 

  29. A.G. Milnes, D.L. Feucht. Heterojunctions and metal-semiconductor junctions (Academic Press, 1972) [ISBN:0124980503].

    Google Scholar 

  30. Simmons JG (1963) Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. J Appl Phys 34:1793–1803. https://doi.org/10.1063/1.1702682

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Koziarskyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orletskyi, I.G. et al. (2023). Influence of Titanium Nitride Thin Films on the Electrical Properties of Isotype n-TiN/n-Si Heterostructures. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-031-18096-5_32

Download citation

Publish with us

Policies and ethics

Navigation