Digital Signature Scheme to Match Generalized Reed-Solomon Code over GF(q)

  • Conference paper
  • First Online:
Cyberspace Safety and Security (CSS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13547))

Included in the following conference series:

Abstract

Code-based public key cryptography is one of the most widely studied cryptographic algorithms against quantum computing attacks. The main issue today is determining how to choose parameters that strike a balance between security and efficiency. The key reason is that public key size is far too large to be practical. This paper is to investigate and select generalized Reed-Solomon (GRS) codes over the q-ary Galois Field (GF(q)), and attempts to build a code-based classic public key cryptographic algorithm (CFS) signature scheme and investigates its feasibility and related performance optimization, providing a full security proof and analysis. Constructing a cryptographic algorithm based on GF(q) coding can effectively reduce the size of the public key size while maintaining security. While the GRS code is preferred over GF (q), it allows for more parameter selection flexibility. It has higher security and a smaller public key size than other code-based digital signature schemes. In the case of slightly improved security, the public key size is only 4.1% of the original CFS scheme.

Supported by National Key Research and Development Program of China (No. 2018YFB0804103), Shaanxi Intelligent Social Development Strategy Research Center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McEliece, R.J.: A public-key cryptosystem based on algebraic. Coding Thv 4244, 114–116 (1978)

    Google Scholar 

  2. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_10

    Chapter  Google Scholar 

  3. Faugere, J.C., Gauthier-Umana, V., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher for high-rate mceliece cryptosystems. IEEE Trans. Inf. Theory 59(10), 6830–6844 (2013)

    Article  MathSciNet  Google Scholar 

  4. Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic use. Des. Codes Crypt. 35(1), 63–79 (2005)

    Article  MathSciNet  Google Scholar 

  5. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2_6

    Chapter  Google Scholar 

  6. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_24

    Chapter  Google Scholar 

  7. Baldi, M., Bianchi, M., Chiaraluce, F., Rosenthal, J., Schipani, D.: Enhanced public key security for the McEliece cryptosystem. J. Cryptol. 29(1), 1–27 (2016)

    Article  MathSciNet  Google Scholar 

  8. Baldi, M., Chiaraluce, F., Rosenthal, J., Santini, P., Schipani, D.: Security of generalised Reed-Solomon code-based cryptosystems. IET Inf. Secur. 13(4), 404–410 (2019)

    Article  Google Scholar 

  9. Finiasz, M.: Parallel-CFS. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 159–170. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_11

    Chapter  Google Scholar 

  10. Lee, Y., Lee, W., Kim, Y.S., No, J.S.: Modified pqsigRM: RM code-based signature scheme. IEEE Access 8, 177506–177518 (2020)

    Article  Google Scholar 

  11. Zhou, Y., Zeng, P., Chen, S.: An improved code-based encryption scheme with a new construction of public key. In: Abawajy, J.H., Choo, K.-K.R., Islam, R., Xu, Z., Atiquzzaman, M. (eds.) ATCI 2019. AISC, vol. 1017, pp. 959–968. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25128-4_118

    Chapter  Google Scholar 

  12. Liu, X., Yang, X., Han, Y., Wang, X.A.: A secure and efficient code-based signature scheme. Int. J. Found. Comput. Sci. 30(04), 635–645 (2019)

    Article  MathSciNet  Google Scholar 

  13. Pellikaan, R., Márquez-Corbella, I.: Error-correcting pairs for a public-key cryptosystem. In: Journal of Physics: Conference Series, vol. 855, p. 012032. IOP Publishing (2017)

    Google Scholar 

  14. Dallot, L.: Towards a concrete security proof of courtois, finiasz and sendrier signature scheme. In: Lucks, S., Sadeghi, A.-R., Wolf, C. (eds.) WEWoRC 2007. LNCS, vol. 4945, pp. 65–77. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88353-1_6

    Chapter  Google Scholar 

  15. Chen, S., Zeng, P., Choo, K.K.R.: A provably secure blind signature based on coding theory. In: 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS), pp. 376–382. IEEE (2016)

    Google Scholar 

  16. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. IACR Cryptology ePrint Archive 2004/332 (2004)

    Google Scholar 

  17. Kachigar, G., Tillich, J.-P.: Quantum information set decoding algorithms. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 69–89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_5

    Chapter  MATH  Google Scholar 

  18. Canto Torres, R., Sendrier, N.: Analysis of information set decoding for a sub-linear error weight. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 144–161. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_10

    Chapter  Google Scholar 

  19. Peters, C.: Information-set decoding for linear codes over F\(_{q}\). In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_7

    Chapter  Google Scholar 

  20. Couvreur, A., Gaborit, P., Gauthier-Umaña, V., Otmani, A., Tillich, J.P.: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes. Des. Codes Crypt. 73(2), 641–666 (2014)

    Article  MathSciNet  Google Scholar 

  21. Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack on a variant of McEliece’s cryptosystem based on Reed-Solomon codes. ar**v preprint ar**v:1204.6459 (2012)

  22. Couvreur, A., Otmani, A., Tillich, J.-P., Gauthier–Umaña, V.: A polynomial-time attack on the BBCRS scheme. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 175–193. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_8

    Chapter  Google Scholar 

  23. Baldi, M., Bianchi, M., Chiaraluce, F., Rosenthal, J., Schipani, D.: Enhanced public key security for the McEliece cryptosystem. submitted. ar**v preprint arxiv:1108.2462 (2011)

  24. Ren, Y., Zhao, Q., Guan, H., Lin, Z.: On design of single-layer and multilayer code-based linkable ring signatures. IEEE Access 8, 17854–17862 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao **e .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., **e, H., Wang, R. (2022). Digital Signature Scheme to Match Generalized Reed-Solomon Code over GF(q). In: Chen, X., Shen, J., Susilo, W. (eds) Cyberspace Safety and Security. CSS 2022. Lecture Notes in Computer Science, vol 13547. Springer, Cham. https://doi.org/10.1007/978-3-031-18067-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18067-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18066-8

  • Online ISBN: 978-3-031-18067-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation