Eoarchean and Early Paleoarchean Crust of the Pilbara Craton

  • Chapter
  • First Online:
Archean Evolution of the Pilbara Craton and Fortescue Basin

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 24))

  • 355 Accesses

Abstract

U–Pb zircon geochronology and Sm–Nd and Lu–Hf isotope data indicate that the Pilbara Craton includes Eoarchean sialic crust formed up to 270 million years before deposition of the greenstone succession (3530–3235 Ma Pilbara Supergroup). Dates on pre-3530 Ma xenocrystic zircons in felsic igneous rocks and detrital zircons in Paleoarchean and Mesoarchean metasedimentary rocks suggest that this early crust evolved from about 3800 Ma. Zircon ages suggest episodic magmatic events at 3760–3700 Ma, c. 3650 Ma and 3590–3570 Ma. Negative ƐHf values from zircons that crystallized during these events, and Hf two-stage depleted mantle model ages, indicate derivation of melts from 4000 to 3800 Ma sources.

Zircon Lu–Hf isotope evidence indicates that 3530–3460 volcanics and granitic rocks were derived from more juvenile sources than applied to pre-3530 Ma felsic igneous rocks. This is interpreted to be evidence for an abrupt change in magma sources between 3550 and 3530 Ma, marking a major event in the early crustal evolution of the Pilbara Craton. The precise nature of this event is unclear, although one likely explanation is that uplift, crustal extension, and rifting of the 3800–3530 Ma crust was due to the arrival of the mantle plume that triggered eruption of the Pilbara Supergroup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–717

    Article  Google Scholar 

  • Allwood AC, Burch I, Walter MR (2007a) Stratigraphy and facies of the 3.43 Ga Strelley Pool Chert in the southwestern North Pole Dome, Pilbara Craton, Western Australia. Record, 2007/11. Geological Survey of Western Australia

    Google Scholar 

  • Allwood AC, Walter MR, Burch IW, Kamber BS (2007b) 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on earth. Precambrian Res 158:198–227

    Article  Google Scholar 

  • Amelin Y, Lee D-C, Halliday AN, Pidgeon RT (1999) Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature 399:252–255. https://doi.org/10.1038/20426

    Article  Google Scholar 

  • Amelin Y, Lee D-C, Halliday AN (2000) Early-middle Archaean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochim Cosmochim Acta 62:4205–4225

    Article  Google Scholar 

  • Anhaeusser CR (1971a) Cyclic volcanicity and sedimentation in the evolutionary development of Archaean greenstone belts of shield areas. In: Glover JE (ed) Symposium on Archaean Rocks, Perth, 23–26 May 1970. Geological Society of Australia, Perth, Western Australia, pp 57–70

    Google Scholar 

  • Anhaeusser CR (1971b) The Barberton Mountain Land, South Africa–a guide to the understanding of the Archaean geology of Western Australia. In: Glover JE (ed) Symposium on Archaean rocks, Perth, 23–26 May 1970. Geological Society of Australia, Perth, Western Australia, pp 103–119

    Google Scholar 

  • Anhaeusser CR, Mason R, Viljoen MJ, Viljoen RP (1969) A reappraisal of some aspects of Precambrian shield geology. Geol Soc Am Bull 80:2175–2200

    Article  Google Scholar 

  • Arndt NT, Goldstein SL (1987) Use and abuse of crust-formation ages. Geology 15:893–895

    Article  Google Scholar 

  • Arndt NT, Bruzak G, Reischmann T (2001) The oldest continental and oceanic plateaus: geochemistry of basalts and komatiites of the Pilbara Craton, Australia. In: Ernst RE, Buchan K (eds) Mantle plumes: their identification through time. Geological Society of America, pp 359–387

    Google Scholar 

  • Bagas L, Farrell TR, Nelson DR (2004) The age and provenance of the Mosquito Creek Formation. In: Geological Survey of Western Australia Annual Review, vol 2003–04, pp 62–70

    Google Scholar 

  • Bagas L, Bierlein FP, Bodorkos S, Nelson DR (2008) Tectonic setting, evolution, and orogenic gold potential of the late Mesoarchaean Mosquito Creek Basin, North Pilbara Craton, Western Australia. Precambrian Res 160:237–244

    Article  Google Scholar 

  • Beintema KA (2003) Geodynamic evolution of the West and Central Pilbara Craton: a mid-Archean active continental margin. Geologica Ultraiectina, Utrecht University, Utrecht, The Netherlands, PhD thesis (unpublished), 248p

    Google Scholar 

  • Beintema KA, de Leeuw GAM, White SH, Hein KAA (2001) Tabba Tabba shear: a crustal-scale structure in the Pilbara Craton, WA. In: Cassidy KF, Dunphy JM, Van Kranendonk MJ (eds) Extended Abstracts–4th International Archaean Symposium, Perth, 24–28 September 2001. AGSO (Geoscience Australia), pp. 285–287

    Google Scholar 

  • Beintema KA, Mason PRD, Nelson DR, White SH, Wijbrans JR (2003) New constraints on the timing of tectonic activity in the Archaean central Pilbara Craton, Western Australia. J Virtual Explor 13. https://doi.org/10.3809/jvirtex.vol.2003.013

  • Bennett VC, Nutman AP, McCulloch MT (1993) Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth. Earth Planet Sci Lett 119:299–317. https://doi.org/10.1016/0012-821X(93)90140-5

    Article  Google Scholar 

  • Bickle MJ, Bettenay LF, Chapman HJ, Groves DI, McNaughton NJ, Campbell IH, de Laeter JR (1989) The age and origin of younger granitic plutons of the Shaw batholith in the Archean Pilbara Block, Western Australia. Contrib Mineral Petrol 101:361–376

    Article  Google Scholar 

  • Bickle MJ, Bettenay LF, Chapman HJ, Groves DI, McNaughton NJ, Campbell IH, de Laeter JR (1993) Origin of the 3500–3300 Ma calc-alkaline rocks in the Pilbara Archaean: isotopic and geochemical constraints from the Shaw Batholith. Precambrian Res 60:117–149

    Article  Google Scholar 

  • Brauhart CW, Huston D, Andrew AS (2000) Oxygen isotope map** in the Panorama VMS district, Pilbara Craton, Western Australia: applications to estimating temperatures of alteration and to exploration. Mineralium Deposita 35:727–740

    Article  Google Scholar 

  • Buick R, Barnes KR (1984) Cherts in the Warrawoona Group: early Archaean silicified sediments deposited in shallow-water environments. In: Muhling JR, Groves DI, Blake TS (eds) Archaean and Proterozoic basins of the Pilbara, Western Australia: evolution and mineralization potential. The University of Western Australia, Geology Department and University Extension, pp. 37–53

    Google Scholar 

  • Buick R, Thornett J, McNaughton N, Smith JB, Barley ME, Savage MD (1995) Record of emergent continental crust ~3.5 billion years ago in the Pilbara Craton of Australia. Nature 375:574–577

    Article  Google Scholar 

  • Buick R, Brauhart CW, Morant P, Thornett JR, Maniw JG, Archibald NJ, Doepel MG, Fletcher IR, Pickard AL, Smith JB, Barley ME, McNaughton NJ, Groves DI (2002) Geochronology and stratigraphic relationships of the Sulphur Springs Group and Strelley Granite: a temporally distinct igneous province in the Archean Pilbara Craton, Australia. Precambrian Res 114:87–120

    Article  Google Scholar 

  • Byerly GR, Lowe DR, Heubeck C (2019) Chapter 24–geologic evolution of the Barberton Greenstone Belt–a unique record of crustal development, surface processes, and early life 3.55–3.20Ga. In: Van Kranendonk MJ, Bennett VC, Hoffmann JE (eds) Earth’s oldest rocks, 2nd edn. Elsevier B.V, pp 569–613

    Chapter  Google Scholar 

  • Byerly GR, Lowe DR, Wooden JL, **e X (2002) An Archean impact layer from the Pilbara and Kaapvaal cratons. Science 297:1325–1327

    Article  Google Scholar 

  • Cawood PA, Hawkesworth CJ, Dhuime B (2012) Detrital zircon record and tectonic setting. Geology 40:875–878

    Article  Google Scholar 

  • Champion DC (2013) Neodymium depleted mantle model age map of Australia: explanatory notes and user guide. Record, 2013/44. Geoscience Australia

    Google Scholar 

  • Champion DC, Huston DL (2016) Radiogenic isotopes, ore deposits and metallogenic terranes: novel approaches based on regional isotopic maps and the mineral systems concept. Ore Geol Rev 76:229–256. https://doi.org/10.1016/j.oregeorev.2015.09.025

    Article  Google Scholar 

  • Champion DC, Smithies RH (2007) Geochemistry of Paleoarchean granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: implications for early Archean crustal growth. In: Van Kranendonk MJ, Bennett VC, Smithies RH (eds) Earth's oldest rocks. Elsevier B.V, Burlington, pp 369–410

    Chapter  Google Scholar 

  • Collerson KD, McCulloch MT (1983) Field and Sr–Nd isotopic constraints on Archaean crust and mantle evolution in the East Pilbara Block, Western Australia. In: Australian National University, Research School of Earth Sciences, Annual Report 1982. Canberra, ACT, pp 167–168

    Google Scholar 

  • Collins WJ (1993) Melting of Archaean silicic crust under high aH2O conditions: genesis of 3300 Ma Na-rich granitoids in the Mount Edgar Batholith, Pilbara Block, Western Australia. Precambrian Res 60:151–174

    Article  Google Scholar 

  • Compston W, Kröner A (1988) Multiple zircon growth within early Archaean tonalitic gneiss from the ancient gneiss complex, Swaziland. Earth Planet Sci Lett 87:13–28

    Article  Google Scholar 

  • Dawes PR, Smithies RH, Centofanti J, Podmore DC (1995a) Sunrise Hill unconformity: a newly discovered regional hiatus between Archaean granites and greenstones in the northeastern Pilbara Craton. Aust J Earth Sci 42:635–639

    Article  Google Scholar 

  • Dawes PR, Smithies RH, Centofanti J, Podmore DC (1995b) Unconformable contact relationships between the Muccan and Warrawagine batholiths and the Archaean Gorge Creek Group in the Yarrie mine area, northeast Pilbara. Record, 1994/3. Geological Survey of Western Australia

    Google Scholar 

  • De Vries ST, Nijman W, Wijbrans JR, Nelson DR (2006) Stratigraphic continuity and early deformation of the central part of the Coppin gap Greenstone Belt, Pilbara, Western Australia. Precambrian Res 147:1–27

    Article  Google Scholar 

  • de Wit MJ, Ashwal LD (eds) (1997) Greenstone belts. Clarendon Press, Oxford

    Google Scholar 

  • de Wit MJ (1983) Notes on a preliminary 1:25,000 geological map of the southern part of the Barberton Greenstone Belt. In: Anhaeusser CR (ed) Contributions to the geology of the Barberton Mountain land. Spec. Publ. Geol. Soc, South Africa, pp 185–187

    Google Scholar 

  • de Wit MJ (1998) On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precambrian Res 91:181–226

    Article  Google Scholar 

  • de Wit MJ, Furnes H, Robins B (2011) Geology and tectonostratigraphy of the Onverwacht suite. Barberton Greenstone Belt, South Africa Precambr Res 186:1–27

    Google Scholar 

  • de Wit MJ, Roering C, Hart RJ, Armstrong RA, de Ronde CEJ, Green RWE, Tredoux M, Peberdy E, Hart RA (1992) Formation of an Archaean continent. Nature 357:553–562

    Article  Google Scholar 

  • Délor C, Burg JP, Clarke G (1991) Relations diapirisme-metamorphisme dans la Province du Pilbara (Australie occidentale): implications pour les régimes thermiques et tectoniques à la Archéen. Compte Rendu Academie de Sciences Paris 312:257–263

    Google Scholar 

  • DePaolo DJ (1988) Neodymium isotope geochemistry: an introduction. Minerals and rocks series, vol no. 20. Springer-Verlag, Berlin, Germany

    Book  Google Scholar 

  • DiMarco MJ, Lowe DR (1989a) Shallow-water volcaniclastic deposition in the early Archean Panorama Formation, Warrawoona Group, Eastern Pilbara Block, Western Australia. Sediment Geol 64:43–63

    Article  Google Scholar 

  • DiMarco MJ, Lowe DR (1989b) Stratigraphy and sedimentology of an Early Archean felsic volcanic sequence, Eastern Pilbara Block, Western Australia, with special reference to the Duffer Formation and implications for crustal evolution. Precambrian Res 44:147–169

    Article  Google Scholar 

  • Drabon N, Lowe DR, Byerly GR, Harrington JA (2017) Detrital zircon geochronology of sandstones of the 3.6–3.2 Ga Barberton greenstone belt: no evidence for older continental crust. Geology 45:803–806

    Article  Google Scholar 

  • Eriksson KA (1981) Archaean platform-to-trough sedimentation, East Pilbara Block, Australia. In: Glover JE, Groves DI (eds) Spec. Publ. Geol. Soc. Aust, vol 7, pp 235–244

    Google Scholar 

  • Fisher CM, Vervoort JD (2018) Using the magmatic record to constrain the growth of continental crust–the Eoarchean zircon Hf record of Greenland. Earth Planet Sci Lett 488:79–91

    Article  Google Scholar 

  • François C, Philippot P, Rey PF, Rubatto D (2014) Burial and exhumation during Archean sagduction in the East Pilbara granite–greenstone terrane. Earth Planet Sci Lett 396:235–251

    Article  Google Scholar 

  • Furnes H, de Wit MJ, Robins B (2012) A review of new interpretations of the tectonostratigraphy, geochemistry and evolution of the Onverwacht suite, Barberton Greenstone Belt, South Africa. Gondwana Res 23:403–428

    Article  Google Scholar 

  • Gardiner NJ, Hickman AH, Kirkland CL, Lu Y, Johnson T, Zhao J-X (2017) Processes of crust formation in the early Earth imaged through Hf isotopes from the East Pilbara Terrane. Precambrian Res 297:56–76. https://doi.org/10.1016/j.precamres.2017.05.004

    Article  Google Scholar 

  • Gardiner NJ, Hickman AH, Kirkland CL, Lu Y, Johnson TE, Wingate MTD (2018) New Hf isotope insights into the Paleoarchean magmatic evolution of the Mount Edgar dome, Pilbara Craton: implications for early Earth and crust formation processes. Report 181. Geological Survey of Western Australia

    Google Scholar 

  • Glikson AY (1972) Early Precambrian evidence of a primitive ocean crust and island nuclei of sodic granite. Geol Soc Am Bull 83:3323–3344

    Article  Google Scholar 

  • Glikson AY (1979) Early Precambrian tonalite-trondhjemite sialic nuclei. Earth Sci Rev 15:1–73

    Article  Google Scholar 

  • Glikson AY, Hickman AH (1981) Geochemistry of Archaean volcanic successions, Eastern Pilbara Block, Western Australia. Bur Min Res Geol Geophys 36

    Google Scholar 

  • Glikson AY, Lambert IB (1976) Vertical zonation and petrogenesis of the early Precambrian crust in Western Australia. Tectonophysics 30:55–89

    Article  Google Scholar 

  • Green MG, Sylvester PJ, Buick R (2000) Growth and recycling of early Archaean continental crust: geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia. Tectonophysics 322:69–88

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova EA, Jackson SR, van Achterbergh E, O'Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Gruau G, Jahn BM, Glikson AY, Davy R, Hickman AH, Chauvel C (1987) Age of the Archean Talga-Talga subgroup, Pilbara Block, Western Australia, and the early evolution of the mantle: new Sm–Nd isotopic evidence. Earth Planet Sci Lett 85:105–116

    Article  Google Scholar 

  • Guitreau M, Blichert-Toft J, Martin H, Mojzsis SJ, Albarède F (2012) Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust. Earth Planet Sci Lett 337:211–223

    Article  Google Scholar 

  • Hamilton PJ, Evensen NM, O’Nions RK, Glikson AY, Hickman AH (1980) Sm-Nd dating of the Talga Talga subgroup, Warrawoona Group, Pilbara Block, Western Australia. In second International Archaean Symposium, Perth 1980, extended abstracts, JE Glover and DI Groves (eds). Geological Society of Australia and IGCP Archaean Geochemistry Project, Perth 1980, pp. 11–12

    Google Scholar 

  • Hamilton PJ, Evensen NM, O'Nions RK, Glikson AY, Hickman AH (1981) Sm–Nd dating of the north star basalt, Warrawoona Group, Pilbara Block, Western Australia. In: Glover JE, Groves DI (eds) Geol. Soc. Aust. Spec. Publ, vol 7, pp 187–192

    Google Scholar 

  • Hasenstab E, Tusch J, Schnabel C, Marien CS, Van Kranendonk MJ, Smithies H, Howard H, Maier WD, Munker C (2021) Evolution of the early to late Archean mantle from Hf-Nd-Ce isotope systematics in basalts and komatiites from the Pilbara Craton. Earth Planet Sci Lett 553(116627):1–13

    Google Scholar 

  • Hickman AH (1975) Explanatory notes on the Nullagine 1:250 000 geological sheet. Record, 1975/5. Geological Survey of Western Australia

    Google Scholar 

  • Hickman AH (1980a) Archaean stratigraphic successions in various parts of the Pilbara Block (correlation chart). Geology of the Pilbara Block and its environs. Geological Survey of Western Australia

    Google Scholar 

  • Hickman AH (1980b) Excursion guide–Archaean geology of the Pilbara Block: second International Archaean Symposium, Perth 1980. Geological Society of Australia, W.A. Division, Perth, Western Australia

    Google Scholar 

  • Hickman AH (1981) Crustal evolution of the Pilbara Block. In: Glover JE, Groves DI (eds) Archaean Geology: second International Symposium, Perth 1980. Geological Society of Australia, pp. 57–69

    Google Scholar 

  • Hickman AH (1983) Geology of the Pilbara Block and its environs. In: Bulletin Geological Survey of Western Australia, vol 127

    Google Scholar 

  • Hickman AH (1984) Archaean diapirism in the Pilbara Block, Western Australia. In: Kröner A, Greiling R (eds) Precambrian tectonics illustrated. Schweizerbart Science Publishers, Stuttgart, Germany, pp 113–127

    Google Scholar 

  • Hickman AH (2008) Regional review of the 3426–3350 Ma Strelley Pool Formation, Pilbara Craton, Western Australia. Record, 2008/15. Geological Survey of Western Australia

    Google Scholar 

  • Hickman AH (2012) Review of the Pilbara Craton and Fortescue Basin, Western Australia: crustal evolution providing environments for early life. Island Arc 21:1–31

    Article  Google Scholar 

  • Hickman AH (2016) Northwest Pilbara Craton: a record of 450 million years in the growth of Archean continental crust. Report, 160. Geological Survey of Western Australia

    Google Scholar 

  • Hickman AH (2021) East Pilbara Craton: a record of one billion years in the growth of Archean continental crust. Report 143, Geological Survey of Western Australia

    Google Scholar 

  • Hickman AH, Lipple SL (1975) Explanatory notes on the Marble Bar 1:250 000 geological sheet, Western Australia. Record, 1974/20. Geological Survey of Western Australia

    Google Scholar 

  • Hickman AH, Lipple SL (1978) Marble Bar, WA Sheet SF50–8, 2nd edn. Geological Survey of Western Australia

    Google Scholar 

  • Hickman AH, Van Kranendonk MJ (2004) Diapiric processes in the formation of Archaean continental crust, East Pilbara granite–greenstone terrane, Australia. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian earth: tempos and events. Elsevier, Amsterdam, The Netherlands, pp 54–75

    Google Scholar 

  • Hoffmann JE, Kroner A (2019) Chapter 23, Early Archean Crustal evolution in Southern Africa–an updated record of the ancient gneiss complex of Swaziland. In: Van Kranendonk MJ, Bennett VC, Hoffmann JE (eds) Earth’s oldest rocks, 2nd edn. Elsevier B.V, pp 437–462. https://doi.org/10.1016/B978-0-444-63901-1.00023-X

    Chapter  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Jahn B, Glikson AY, Peucat JJ, Hickman AH (1981) REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution. Geochim Cosmochim Acta 45:1633–1652

    Article  Google Scholar 

  • Johnson SP, Sheppard S, Rasmussen B, Wingate MTD, Kirkland CL, Muhling JR, Fletcher IR, Belousova EA (2011) Two collisions, two sutures: punctuated pre−1950 Ma assembly of the West Australian Craton during the Ophthalmian and Glenburgh Orogenies. Precambrian Res 189:239–262. https://doi.org/10.1016/j.precamres.2011.07.011

  • Johnson SP, Thorne AM, Tyler IM, Korsch RJ, Kennett BLN, Cutten HN, Goodwin J, Blay OA, Blewett RS, Joly A, Dentith MC, Aitken ARA, Holzschuh J, Salmon M, Reading A, Heinson G, Boren G, Ross J, Costelloe RD, Fomin T (2013) Crustal architecture of the Capricorn Orogen, Western Australia and associated metallogeny. Aust J Earth Sci 60:681–705. https://doi.org/10.1080/08120099.2013.826735

    Article  Google Scholar 

  • Kabashima T, Isozaki Y, Hirata T, Maruyama S, Kiminami K, Nishimura Y (2003) U–Pb zircon ages by laser ablation ICP-MS techniques from the Archean felsic intrusive and volcanic rocks in the North Pole Area, Western Australia. J Geogr 112:1–17

    Article  Google Scholar 

  • Kamo SL, Davis DW (1994) Reassessment of Archean crustal development in the Barberton Mountain land, South Africa, based on U –Pb dating. Tectonics 13:167–192

    Article  Google Scholar 

  • Kemp AIS, Hickman AH, Kirkland CL (2015a) Early evolution of the Pilbara Craton, Western Australia, from hafnium isotopes in detrital and inherited zircons. Report 151. Geological Survey of Western Australia

    Google Scholar 

  • Kemp AIS, Hickman AH, Kirkland CL, Vervoort JD (2015b) Hf isotopes in detrital and inherited zircons of the Pilbara Craton provide no evidence for Hadean continents. Precambrian Res 261:112–126

    Article  Google Scholar 

  • Kemp AIS, Vervoort JD, Bjorkman KE, Iaccheri LM (2017) Hafnium isotope characteristics of Palaeoarchaean zircon OG1/OGC from the Owens Gully Diorite, Pilbara Craton, Western Australia. Geostand Geoanal Res 41:659–673. https://doi.org/10.1111/ggr.12182

    Article  Google Scholar 

  • Kemp AIS, Vervoort JD, Hickman AH, Smithies RH, Wyche S, Wingate MTD, Kirkland CL (2014) Growing ancient Australia: hafnium and neodymium isotope constraints from the Yilgarn and Pilbara cratons. In: Dynamic planet–Precambrian geochronology (Abstracts), pp. 205–206

    Google Scholar 

  • Kemp AIS, Vervoort JD, Smithies RH, Hickman AH, Van Kranendonk MJ (2011) Recoupling the Nd–Hf isotope record of the early Earth? Evidence from the Pilbara Craton, Western Australia (Abstract V44B-04). In: Abstracts

    Google Scholar 

  • Kisters AFM, Belcher RW, Poujol M, Dziggel A (2010) Continental growth and convergence-related arc plutonism in the Mesoarchean: evidence from the Barberton granitoid-greenstone terrain, South Africa. Precambrian Res 178:15–26

    Article  Google Scholar 

  • Kitajima, K, Hirata, T, Maruyama, S, Yamanashi, T., Sano, Y. and Liou, JG (2008) U–Pb zircon geochronology using LA-ICP-MS in the North Pole Dome, Pilbara Craton, Western Australia: a new tectonic growth model for the Archean chert/greenstone succession, v. 80, p. 1–14

    Google Scholar 

  • Komiya T, Maruyama S (2007) A very hydrous mantle under the western Pacific region: implications for formation of marginal basins and style of Archean plate tectonics. Gondwana Res 11:132–147

    Article  Google Scholar 

  • Krapež B (1984) Sedimentation in a small, fault-bounded basin: the Lalla Rookh sandstone, East Pilbara Block. In: Muhling JR, Groves DI, Blake TS (eds) Archaean and Proterozoic basins of the Pilbara, Western Australia: evolution and mineralization potential. The University of Western Australia, Geology Department and University Extension, pp. 89–110

    Google Scholar 

  • Krapež B, Barley ME (1987) Archaean strike-slip faulting and related ensialic basins: evidence from the Pilbara Block. Australia Geol Mag 124:555–567. https://doi.org/10.1017/S0016756800017386

    Article  Google Scholar 

  • Kröner A, Anhaeusser CR, Hoffmann JE, Wong J, Geng H, Hegner E, **e H, Yang J, Liu D (2016) Chronology of the oldest supracrustal sequences in the Palaeoarchaean Barberton Greenstone Belt, South Africa and Swaziland. Precambrian Res 279:123–143

    Article  Google Scholar 

  • Kröner A, Compston W, Williams IS (1989) Growth of early Archaean crust in the Ancient Gneiss complex of Swaziland as revealed by single zircon dating. Tectonophysics 161:271–298

    Article  Google Scholar 

  • Kröner A, Hegner E, Wendt JI, Byerly GR (1996) The oldest part of the Barberton granitoid-greenstone terrain, South Africa: evidence for crust formation between 3.5 and 3.7 Ga. Precambrian Res 78:105–124

    Article  Google Scholar 

  • Kröner A, Hoffmann JE, **e H, Munker C, Hegner E, Wan Y, Hofmann AJ, Liu D, Yang J (2014) Generation of early Archaean grey gneisses through melting of older crust in the Eastern Kaapvaal Craton, southern Africa. Precambrian Res 255:823–846

    Article  Google Scholar 

  • McCulloch MT (1987) Sm–Nd isotopic constraints on the evolution of Precambrian crust in the Australian continent. In: Kröner A (ed) Proterozoic lithosphere evolution. American Geophysical Union, pp 111–120

    Google Scholar 

  • McCulloch MT, Wasserburg GJ (1978) Sm–Nd and Rb–Sr chronology of continental crust formation. Science 200:1003–1011

    Article  Google Scholar 

  • McCulloch MT, Bennett VC (1993) Evolution of the early earth: constraints from 143Nd–142Nd isotope systematics. Lithos 30:237–255

    Article  Google Scholar 

  • McNaughton NJ, Green MD, Compston W, Williams IS (1988) Are anorthositic rocks basement to the Pilbara Craton? Geol Soc Aust Abstr 21:272–273

    Google Scholar 

  • Moyen J-F, Stevens G, Kisters AFM (2006) Record of mid-Archaean subduction and metamorphism in the Barberton terrain, South Africa. Nature 442:559–562

    Article  Google Scholar 

  • Nebel O, Campbell IH, Sossi PA, Van Kranendonk MJ (2014) Hafnium and iron isotopes in early Archean komatiites record a plume-driven convection cycle in the hadean earth. Earth Planet Sci Lett 397:111–120

    Article  Google Scholar 

  • Nebel-Jacobsen Y, Munker C, Nebel O, Gerdes A, Mezger K, Nelson DR (2010) Reworking of Earth’s first crust: constraints from Hf isotopes in Archean zircons from Mt. Narryer. Australia Precambr Res 182:175–186

    Article  Google Scholar 

  • Nelson DR (1996) Compilation of SHRIMP U-Pb zircon geochronology data, 1995. Record, 1996/5. Geological Survey of Western Australia

    Google Scholar 

  • Nelson DR (1998) Compilation of SHRIMP U-Pb zircon geochronology data, 1997. Record, 1998/2. Geological Survey of Western Australia

    Google Scholar 

  • Nelson DR (1999) Compilation of geochronology data, 1998. Record, 1999/2. Geological Survey of Western Australia

    Google Scholar 

  • Nelson DR (2000) Compilation of geochronology data, 1999. Geological Survey of Western Australia, Record 2000(2):251p

    Google Scholar 

  • Nelson DR (2001) Compilation of geochronology data, 2000. Record, 2001/2. Geological Survey of Western Australia

    Google Scholar 

  • Nelson DR (2002) Compilation of geochronology data, 2001. Record, 2002/2. Geological Survey of Western Australia

    Google Scholar 

  • Nelson DR (2005) 178031: porphyritic biotite granodiorite. Mulgandoona Hill, Record 556. Geological Survey of Western Australia

    Google Scholar 

  • Nelson DR (2006) Compilation of geochronology data 2006, June 2006 update. Geological Survey of Western Australia

    Google Scholar 

  • Ohta H, Maruyama S, Takahashi E, Watanabe Y, Kato Y (1996) Field occurrence, geochemistry and petrogenesis of the Archaean mid-oceanic ridge basalts (AMORBs) of the Cleaverville area, Pilbara Craton, Western Australia. Lithos 37:199–221

    Article  Google Scholar 

  • Olivier N, Dromart G, Coltice N, Flament N, Rey P, Sauvestre R (2012) A deep subaqueous fan depositional model for the Palaeoarchean (3.46 Ga) marble Bar Cherts, Warrawoona Group. Western Australia Geol Mag 149:743–749

    Google Scholar 

  • Pawley MJ, Van Kranendonk MJ, Collins WJ (2004) Interplay between deformation and magmatism during doming of the Archaean Shaw granitoid complex, Pilbara Craton, Western Australia. Precambrian Res 131:213–230

    Article  Google Scholar 

  • Petersson A, Kemp AIS, Hickman AH, Van Kranendonk MJ, Whitehouse MJ, Martin L, Gray CM (2019a) A new 3.59 Ga magmatic suite and a chondritic source to the East Pilbara Craton. Chem Geol 511:51–70. https://doi.org/10.1016/j.chemgeo.2019.01.021

    Article  Google Scholar 

  • Petersson A, Kemp AIS, Whitehouse MJ (2019b) A Yilgarn seed to the Pilbara Craton (Australia)? Evidence from inherited zircons. Geology 47:1098–1102. https://doi.org/10.1130/G46696.1

    Article  Google Scholar 

  • Petersson A, Kemp AIS, Gray CM, Whitehouse MJ (2020) Formation of early Archean granite–greenstone terranes from a globally chondritic mantle: insights from igneous rocks of the Pilbara Craton. Western Australia Chemical Geology 551. https://doi.org/10.1016/j.chemgeo.2020.119757

  • Pidgeon RT (1978) 3450-m.y.-old volcanics in the Archaean layered greenstone succession of the Pilbara Block, Western Australia. Earth Planet Sci Lett 37:421–428. https://doi.org/10.1016/0012-821X(78)90057-2

    Article  Google Scholar 

  • Roberts NMW, Spencer CJ (2015) The zircon archive of continent formation through time. In: Continent formation through time, NMW Roberts, MJ Van Kranendonk S Parman, S Shirley, PD Clift (eds). Geological Society, London, Special Publications 389:197–225

    Google Scholar 

  • Scherer E, Münker C, Mezger K (2001) Calibration of the Lutetium-Hafnium Clock. Science 293(5530):683–687. https://doi.org/10.1126/science.1061372

    Article  Google Scholar 

  • Schoene B, Bowring SA (2010) Rates and mechanisms of Mesoarchean magmatic arc construction, Eastern Kaapvaal Craton, Swaziland. GSA Bull 122:408–429. https://doi.org/10.1130/B26501.1

    Article  Google Scholar 

  • Schoene B, de Wit MJ, Bowring SA (2008) Mesoarchean assembly and stabilization of the Eastern Kaapvaal Craton: a structural–thermochronological perspective. Tectonics 27:1–27. https://doi.org/10.1029/2008TC002267

    Article  Google Scholar 

  • Sheppard S, Occhipinti SA, Nelson DR (2005) Intracontinental reworking in the Capricorn Orogen, Western Australia: the 1680–1620 Ma Mangaroon Orogeny. Aust J Earth Sci 52:443–460

    Article  Google Scholar 

  • Smirnov AV, Evans ADA, Ernst RE, Söderlund U, Li ZX (2013) Trading partners: tectonic ancestry of southern Africa and western Australia, in Archean supercratons Vaalbara and Zimgarn. Precambrian Res 224:11–12

    Article  Google Scholar 

  • Smith JB, Barley ME, Groves DI, Krapež B, McNaughton NJ, Bickle MJ, Chapman HJ (1998) The Sholl Shear Zone, West Pilbara; evidence for a domain boundary structure from integrated tectonostratigraphic analysis, SHRIMP U–Pb dating and isotopic and geochemical data of granitoids. Precambrian Res 88:143–172

    Google Scholar 

  • Smithies RH (2000) The Archaean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125

    Article  Google Scholar 

  • Smithies RH, Champion DC, Cassidy KF (2003) Formation of Earth's early Archaean continental crust. Precambrian Res 127:89–101

    Article  Google Scholar 

  • Smithies RH, Champion DC, Sun S-S (2004) Evidence for early LREE-enriched mantle source regions: diverse magmas from the c. 3.0 Ga Mallina Basin, Pilbara Craton, NW Australia. J Petrol 45:1515–1537

    Article  Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ (2007a) The oldest well-preserved volcanic rocks on earth: geochemical clues to the early evolution of the Pilbara Supergroup and implications for the growth of a Paleoarchean continent. In: Van Kranendonk MJ, Bennett VC, Smithies RH (eds) Earth's oldest rocks. Elsevier B.V, Burlington, Massachusetts, USA, pp 339–367

    Chapter  Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ (2009) Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth Planet Sci Lett 281:298–306

    Article  Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ, Hickman AH (2007b) Geochemistry of volcanic rocks of the northern Pilbara Craton, Western Australia. Report, vol 104. Geological Survey of Western Australia

    Google Scholar 

  • Smithies RH, Van Kranendonk MJ, Champion DC (2007c) The Mesoarchean emergence of modern-style subduction. In: Maruyama S, Santosh M (eds) Island arcs: past and present, pp 50–68

    Google Scholar 

  • Spaggiari CV, Wartho J-A, Wilde SA (2008) Proterozoic deformation in the northwest of the Archean Yilgarn Craton, Western Australia. Precambrian Res 162:354–384

    Article  Google Scholar 

  • Suhr N, Hoffmann JE, Kröner A, Schröder S (2015) Archaean granulite-facies paragneisses from Central Swaziland: inferences on Palaeoarchaean crustal reworking and a complex metamorphic history. J Geol Soc 172:139–152. https://doi.org/10.1144/jgs2014-007

    Article  Google Scholar 

  • Sun S-S, Hickman AH (1998) New Nd-isotopic and geochemical data from the west Pilbara–implications for Archaean crustal accretion and shear zone development. Australian Geological Survey Organisation, Research Newsletter:25–29

    Google Scholar 

  • Sun S-S, Hickman AH (1999) Geochemical characteristics of ca 3.0-Ga Cleaverville greenstones and later mafic dykes, west Pilbara: implication for Archaean crustal accretion. Australian Geological Survey Organisation, Research Newsletter:23–29

    Google Scholar 

  • Taylor J, Stevens G, Buick IS, Lana C (2012) Successive mid-crustal, high-grade metamorphic events provide insight into Mid-Archean mountain building along the SE margin of the proto–Kaapvaal Craton. Geological Society America Bulletin 124:1191–1211. https://doi.org/10.1130/B30543.1

    Article  Google Scholar 

  • Tessalina SG, Bourdon B, Van Kranendonk M, Birck JL, Philippot P (2010) Influence of Hadean crust evident in basalts and cherts from the Pilbara Craton. Nat Geosci 3:214–217

    Article  Google Scholar 

  • Thorpe R, Hickman AH, Davis D, Morton JGG, Trendall AF (1992) U–Pb zircon geochronology of Archaean felsic units in the Marble Bar region, Pilbara Craton, Western Australia. Precambrian Res 56:169–189

    Google Scholar 

  • Tyler IM, Fletcher IR, de Laeter JR, Williams IR, Libby WG (1992) Isotope and rare earth element evidence for a late Archaean terrane boundary in the southeastern Pilbara Craton, Western Australia. Precambrian Res 54:211–229

    Article  Google Scholar 

  • Van Kranendonk MJ (2000) Geology of the North Shaw 1:100 000 sheet. 1:100 000 Geological Series Explanatory Notes. Geological Survey of Western Australia

    Google Scholar 

  • Van Kranendonk MJ (2011) Cool greenstone drips and the role of partial convective overturn in Barberton greenstone belt evolution. J Afr Earth Sci 60:346–352. https://doi.org/10.1016/j.jafrearsci.2011.03.012

    Article  Google Scholar 

  • Van Kranendonk MJ, Collins WJ, Hickman AH, Pawley MJ (2004a) Critical tests of vertical vs horizontal tectonic models for the Archean East Pilbara granite–greenstone Terrane, Pilbara Craton, Western Australia. Precambrian Res 131:173–211

    Article  Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Smithies RH, Champion DC (2007a) Paleoarchean development of a continental nucleus: the East Pilbara Terrane of the Pilbara Craton, Western Australia. In: Van Kranendonk MJ, Bennett VC, Smithies RH (eds) Earth's oldest rocks. Elsevier B.V, Burlington, Massachusetts, USA, pp 307–337

    Chapter  Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Smithies RH, Nelson DN, Pike G (2002) Geology and tectonic evolution of the Archaean North Pilbara terrain, Pilbara Craton, Western Australia. Econ Geol 97:695–732. https://doi.org/10.2113/gsecongeo.97.4.695

    Article  Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Smithies RH, Williams IR, Bagas L, Farrell TR (2006) Revised lithostratigraphy of Archean supracrustal and intrusive rocks in the northern Pilbara Craton, Western Australia. Record, 2006/15. Geological Survey of Western Australia

    Google Scholar 

  • Van Kranendonk MJ, Kirkland CL, Cliff J (2015b) Oxygen isotopes in Pilbara Craton zircons support a global increase in crustal recycling at 3.2 Ga. Lithos 228-229:90–98

    Article  Google Scholar 

  • Van Kranendonk MJ, Kröner A, Hoffman JE, Nagel T, Anhaeusser CR (2014) Just another drip: re-analysis of a proposed Mesoarchean suture from the Barberton Mountain Land, South Africa. Precambrian Res 254:19–35. https://doi.org/10.1016/j.precamres.2014.07.022

    Article  Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Griffin WL, Huston DL, Hickman AH, Champion DC, Anhaeusser CR, Pirajno F (2015a) Making it thick: a volcanic plateau origin of Paleoarchean continental lithosphere of the Pilbara and Kaapvaal cratons. Geol Soc Lond, Spec Publ 389:89–111. https://doi.org/10.1144/SP389.12

    Article  Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Hickman AH, Bagas L, Williams IR, Farrell TR (2004b) Event stratigraphy applied to 700 million years of Archean crustal evolution, Pilbara Craton, Western Australia. Geological Survey of Western Australia Annual Review 2003–04:49–61

    Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007b) Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1–38

    Article  Google Scholar 

  • Vervoort JD (2011) Evolution of the depleted mantle–revisited. In: Abstracts, abstract ID V43E-06

    Google Scholar 

  • Vervoort JD, Blichert-Toft J (1999) Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta 63:533–556

    Article  Google Scholar 

  • Vervoort JD, Kemp AIS (2016) Clarifying the zircon Hf isotope record of crust–mantle evolution. Chem Geol 425:65–75. https://doi.org/10.1016/j.chemgeo.2016.01.023

    Article  Google Scholar 

  • Viljoen MJ, Viljoen, RP (1971) The geological and geochemical evolution of the Onverwacht volcanic group of the Barberton Mountain Land, South Africa. In Symposium on Archaean rocks, Glover JE. (ed). Geol. Soc. Australia Special Pub. No. 3:133–149

    Google Scholar 

  • Wacey D, McLoughlin N, Stoakes CA, Kilburn MR, Green OR, Brasier MD (2010) The 3426–3350 Ma Strelley Pool Formation in the East Strelley greenstone belt–a field and petrographic guide. Record, 2010/10. Geological Survey of Western Australia

    Google Scholar 

  • White WM (2013) Geochemistry. Wiley-Blackwell, Chichester, UK

    Google Scholar 

  • Wiemer D, Schrank CE, Murphy DT, Hickman AH (2016) Lithostratigraphy and structure of the early Archaean Doolena Gap greenstone belt, East Pilbara Terrane, Western Australia. Precambrian Res 282:121–138

    Article  Google Scholar 

  • Wiemer D, Schrank CE, Murphy DT, Wenham L, Allen CM (2018) Earth’s oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns. Nat Geosci 11:357–361. https://doi.org/10.1038/s41561-018-0105-9

    Article  Google Scholar 

  • Wilhelmij HR, Dunlop JSR (1984) A genetic stratigraphic investigation of the Gorge Creek Group in the Pilgangoora syncline. In: Muhling JR, Groves DI, Blake TS (eds) Archaean and Proterozoic basins of the Pilbara, Western Australia: evolution and mineralization potential. The University of Western Australia, Geology Department and University Extension, pp. 68–88

    Google Scholar 

  • Windley BF (1976) New tectonic models for the evolution of Archaean continents and oceans. In: Windley BF (ed) The early history of the Earth. NATO Advanced Study Institute, University of Leicester, pp 105–111

    Google Scholar 

  • Wingate MTD, Bodorkos S, Van Kranendonk MJ (2009a) 180070: volcaniclastic sandstone, drillcore PDP2c, Dresser Mine

    Google Scholar 

  • Wingate MTD, Bodorkos S, Van Kranendonk MJ (2009b) 180057: tonalitic orthogneiss, Big Junction Well

    Google Scholar 

  • Wingate MTD, Kirkland CL, Bodorkos S, Hickman AH (2010) 160258: felsic metavolcanic rock. Orchard Well

    Google Scholar 

  • Zeh A, Gerdes A, Millonig L (2011) Hafnium isotope record of the ancient gneiss complex, Swaziland, southern Africa: evidence for Archaean crust–mantle formation and crust reworking between 3.66 and 2.73 Ga. J Geol Soc Lond 168:953–963

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hickman, A.H. (2023). Eoarchean and Early Paleoarchean Crust of the Pilbara Craton. In: Archean Evolution of the Pilbara Craton and Fortescue Basin. Modern Approaches in Solid Earth Sciences, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-18007-1_2

Download citation

Publish with us

Policies and ethics

Navigation