Comparison of Numerical Model with Experimental Measurements for the Purpose of Testing Partially and Fully Biodegradable Stents

  • Chapter
  • First Online:
Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 237 Accesses

Abstract

Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous elements in the arterial wall. This accumulation produces plaque in the arteries. Percutaneous transluminal coronary angioplasty (PTCA) is a minimally invasive procedure that opens narrowed coronary arteries because of the plaque growth. A medical device that can hold an artery open in the area of narrowing is called a stent and it usually resembles a mesh tube. Mechanical stent tests are standard preclinical procedure used to simulate stent behavior for different physiological conditions. In this research, a mechanical test called three-point bending test was performed on a partially and fully bioresorbable vascular scaffold (BVS) manufactured by Boston Scientific Limited [1]. Poly-l-lactic acid (PLLA) material model was implemented for the numerical model inside in-house PAK [2] software. Measurements obtained by mechanical testing were compared with the numerical results. There is a strong correlation between the numerical simulation and real experiments with a coefficient of determination (R2) > 0.99 and a correlation coefficient (R) > 0.99. It can be concluded that in silico mechanical tests can partially or fully replace in vitro stent tests, which can open a new avenue for regulatory submission and change regulatory ISO standard procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jovicic, G., Vukicevic, A., Filipovic, N.: Computational assessment of stent durability using fatigue to fracture approach. J Med Dev 8(4), 041002 (2014). https://doi.org/10.1115/1.4027687

    Article  Google Scholar 

  2. Kojic M, Filipovic N et al (2022). http://www.bioirc.ac.rs/index.php/software/5-pak. Last visited: 29 September 2022

  3. Martin, D., Boyle, F.J.: Computational structural modelling of coronary stent deployment: a review. Comput Methods Biomech Biomed Eng 14(4), 331–348 (2011). https://doi.org/10.1080/10255841003766845

    Article  Google Scholar 

  4. Balossino, R., Gervaso, F., Migliavacca, F., Dubini, G.: Effects of different stent designs on local hemodynamics in stented arteries. J Biomech 41(5), 1053–1061 (2008). https://doi.org/10.1016/j.jbiomech.2007.12.005

    Article  Google Scholar 

  5. LaDisa, J., Hettrick, D., Olson, L., Guler, I., Gross, E., Kress, T., Kersten, J., Warltier, D., Pagel, P.: Stent implantation alters coronary artery hemodynamics and wall shear stress during maximal vasodilation. J Appl Physiol 93(6), 1939–1946 (2002). https://doi.org/10.1152/japplphysiol.00544.2002

    Article  Google Scholar 

  6. LaDisa, J., Olson, L., Guler, I., Hettrick, D., Audi, S., Kersten, J., Warltier, D., Pagel, P.: Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J Appl Physiol 97(1), 424–430 (2004). https://doi.org/10.1152/japplphysiol.01329.2003

    Article  Google Scholar 

  7. Pontrelli G, de Monte F (2007) Modelling of mass convection diffusion in stent-based drug-delivery. Paper presented at: XXV Congresso Nazionale UIT sulla Trasmssione del Calore, 18–20 May 2007, Trieste

    Google Scholar 

  8. Zunino, P., D’Angelo, C., Petrini, L., Vergara, C., Capelli, C., Migliavacca, F.: Numerical simulation of drug eluting coronary stents: mechanics, fluid dynamics and drug release. Comput Methods Appl Mech Eng 198, 3633–3644 (2009). https://doi.org/10.1016/j.cma.2008.07.019

    Article  Google Scholar 

  9. Mac Donald BJ (2007) Practical stress analysis with finite elements. Glasnevin Publishing, Dublin

    Google Scholar 

  10. Dumoulin, C., Cochelin, B.: Mechanical behaviour modelling of balloon-expandable stents. J Biomech 33, 1461–1470 (2000). https://doi.org/10.1016/S0021-9290(00)00098-1

    Article  CAS  Google Scholar 

  11. Etave, F., Finet, G., Boivin, M., Boyer, J.C., Rioufol, G., Thollet, G.: Mechanical properties of coronary stents determined by using finite element analysis. J Biomech 34(8), 1065–1075 (2001). https://doi.org/10.1016/s0021-9290(01)00026-4

    Article  CAS  Google Scholar 

  12. Migliavacca, F., Petrini, L., Montanari, V., Quagliana, I., Auricchio, F., Dubini, G.: A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med Eng Phys 27(1), 13–18 (2005). https://doi.org/10.1016/j.medengphy.2004.08.012

    Article  Google Scholar 

  13. Chua, D., MacDonald, B., Hashmi, M.: Finite element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion. J Mater Process Technol 155–156, 1772–1779 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.396

    Article  Google Scholar 

  14. Chua, D., MacDonald, B., Hashmi, M.: Effects of varying slotted tube (stent) geometry on its expansion behaviour using finite element method. J Mater Process Technol 155–156, 1764–1771 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.395

    Article  Google Scholar 

  15. Bathe, K.J.: Finite element procedures. Prentice-Hall, Englewood Cliffs, NJ (1996)

    Google Scholar 

  16. De Beule, M., Mortier, P., Carlier, S.G., Verhegghe, B., Van Impe, R., Verdonck, P.: Realistic finite element-based stent design: the impact of balloon folding. J Biomech 41(2), 383–389 (2008). https://doi.org/10.1016/j.jbiomech.2007.08.014

    Article  Google Scholar 

  17. Petrini, L., Migliavacca, F., Auricchio, F., Dubini, G.: Numerical investigation of the intravascular coronary stent flexibility. J Biomech 37, 495–501 (2004). https://doi.org/10.1016/j.jbiomech.2003.09.002

    Article  Google Scholar 

  18. Auricchio, F., Di Loreto, M., Sacco, E.: Finite element analysis of a stenotic artery revascularisation through a stent insertion. Comput Methods Biomech Biomed Eng 4, 249–263 (2001). https://doi.org/10.1080/10255840108908007

    Article  Google Scholar 

  19. Capelli, C., Gervaso, F., Petrini, L., Dubini, G., Migliavacca, F.: Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry. Med Eng Phys 31(4), 441–447 (2009). https://doi.org/10.1016/j.medengphy.2008.11.002

    Article  Google Scholar 

  20. Holzapfel, G.A., Stadler, M., Gasser, T.C.: Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J Biomech Eng 127(1), 166–180 (2005). https://doi.org/10.1115/1.1835362

    Article  Google Scholar 

  21. Lally, C., Dolan, F., Prendergast, P.J.: Cardiovascular stent design and vessel stresses: a finite element analysis. J Biomech 38(8), 1574–1581 (2005). https://doi.org/10.1016/j.jbiomech.2004.07.022

    Article  CAS  Google Scholar 

  22. Karanasiou GS et al (2018) In Silico analysis of stent deployment-effect of stent design. In: 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Honolulu, HI, pp 4567–4570. https://doi.org/10.1109/EMBC.2018.8513205

  23. Soares JS, Moore JE (2015) Biomechanical challenges to polymeric biodegradable stents. Ann Biomed Eng 44:560–579. https://doi.org/10.1007/s10439-015-1477-2

  24. Soares JS, Moore Jr JE, Rajagopal KR (2007) Modeling of biological materials. Mollica F, Preziosi L, Rajagopal KR (eds). Birkhauser Basel, pp 125–177

    Google Scholar 

  25. Soares JS, Moore Jr JE, Rajagopal KR (2008) Constitutive framework for biodegradable polymers with applications to biodegradable stents. ASAIO J 54(3):295–301. https://doi.org/10.1097/MAT.0b013e31816ba55a

  26. Soares JS, Rajagopal KR, Moore Jr JE (2010) Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus. Biomech Model Mechanobiol 9:177–186.https://doi.org/10.1007/s10237-009-0168-z

  27. Vieira, A.C., Vieira, J.C., Ferra, J.M., Magalhaes, F.D., Guedes, R.M., Marques, A.T.: Mechanical study of PLA–PCL fibers during in vitro degradation. J Mech Behav Biomed Mater 4, 451–460 (2011). https://doi.org/10.1016/j.jmbbm.2010.12.006

    Article  CAS  Google Scholar 

  28. Vieira, A.C., Guedes, R.M., Tita, V.: Constitutive modeling of biodegradable polymers: hydrolytic degradation and time-dependent behavior. Int J Solids Struct 51, 1164–1174 (2014). https://doi.org/10.1016/j.ijsolstr.2013.12.010

    Article  CAS  Google Scholar 

  29. Bergstrom, J.S., Boyce, M.C.: Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46, 931–954 (1998). https://doi.org/10.1016/S0022-5096(97)00075-6

    Article  CAS  Google Scholar 

  30. O’Brien, B.J., Stinson, J.S., Larsen, S.R., Eppihimer, M.J., Carroll, W.M.: A platinum-chromium steel for cardiovascular stents. Biomaterials 31(14), 3755–3761 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.146

    Article  CAS  Google Scholar 

  31. Kojic, M., Bathe, K.J.: Inelastic analysis of solids and structures. Springer, Berlin-Heidelberg-New York (2005)

    Google Scholar 

  32. Kojic M, Filipovic N, Stojanovic B, Kojic N (2008) Computer modeling in bioengineering—theoretical background, examples and software. Wiley, England. 978-0-470-06035-3

    Google Scholar 

  33. Isailovic, V., Kojic, M., Milosevic, M., Filipovic, N., Kojic, N., Ziemys, A., Ferrari, M.: A computational study of trajectories of micro- and nano-particles with different shapes in flow through small channels. J Serbian Soc Comput Mech 8(2), 14–28 (2014). https://doi.org/10.5937/jsscm1402014I

    Article  Google Scholar 

  34. Djukic, T., Saveljic, I., Pelosi, G., Parodi, O., Filipovic, N.: Numerical simulation of stent deployment within patient-specific artery and its validation against clinical data. Comput Methods Prog Biomed 175, 121–127 (2019). https://doi.org/10.1016/j.cmpb.2019.04.005

    Article  Google Scholar 

  35. Krsmanovic D, Filipovic N, Koncar I, Petrovic D, Milasinovic D, Davidovic L (2014) Computer modelling of maximal displacement forces in endoluminal thoracic aortic stent graft. Comput Methods Biomech Biomed Eng 17(9):1012–1020. https://doi.org/10.1080/10255842.2012.735661

  36. Vukicevic, A.M., Stepanovic, N.M., Jovicic, G.R., Apostolovic, S.R., Filipovic, N.D.: Computer methods for follow-up study of hemodynamic and disease progression in the stented coronary artery by fusing IVUS and X-ray angiography. Med Biol Eng Comput 52(6), 539–556 (2014). https://doi.org/10.1007/s11517-014-1155-9

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the European Project H2020 InSilc [grant number 777119] and Serbian Ministry of Education, Science, and Technological Development [451-03-68/2020-14/200107 (Faculty of Engineering, University of Kragujevac). This chapter reflects only the author’s view. The Commission is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Filipović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filipović, N. (2023). Comparison of Numerical Model with Experimental Measurements for the Purpose of Testing Partially and Fully Biodegradable Stents. In: Najman, S., et al. Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-17269-4_11

Download citation

Publish with us

Policies and ethics

Navigation