Tailoring the Microenvironment of Cells Towards Osteogenic Differentiation Using Multilayers of Glycosaminoglycans and Growth Factor Immobilization

  • Chapter
  • First Online:
Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 252 Accesses

Abstract

The extracellular matrix (ECM) provides the structural support and signals important for cell fate, tissue homeostasis and regeneration. Layer-by-Layer technique can apply ECM components like glycosaminoglycans (GAGs) and proteins due to their intrinsic charge to make ECM-like multilayers. Here, the effect of microenvironment on controlling human adipose-derived stem cells’ (hADSCs) behavior was studied using multilayers composed of native GAGs (nGAGs) such as, hyaluronic acid (HA) and chondroitin sulfate (CS) or their oxidized forms “oGAGs” (oHA & oCS) in combination with collagen I; based primarily on ion pairing and on additional intrinsic covalent cross-linking by imine bond formation. Osteogenic differentiation of hADSCs was found to be stronger, when collagen I was combined with CS and in case of intrinsic cross-linking using oCS. While these studies still required osteogenic media to achieve differentiation, the second part of this study was conducted using heparin (H) and CS that were combined with chitosan as polycation. oH and oCS permitted not only intrinsic cross-linking to enhance the multilayer stability, but also controlled the release of the osteogenic growth factor BMP-2. There, the oGAGs systems were superior to nGAGs in controlling osteogenic differentiation of C2C12 muscle cells. Overall, multilayers made of oxidized CS with either collagen I or chitosan as polycations, seem to be useful to direct cell differentiation towards osteogenic and other lineages

Reema Anouz and Mingyan Zhao are contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frantz, C., Stewart, K.M., Weaver, V.M.: The extracellular matrix at a glance. J. Cell Sci. 123(24), 4195 (2010). https://doi.org/10.1242/jcs.023820

    Article  CAS  Google Scholar 

  2. Mecham, R.P.: Overview of extracellular matrix. Curr. Protoc. Cell Biol. 57, 10.1.1–10.1.16 (2012). https://doi.org/10.1002/0471143030.cb1001s57

  3. Schaefer, L.S.R.: Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 339, 237–246 (2010)

    Article  CAS  Google Scholar 

  4. Hynes, R.O.: The extracellular matrix: Not just pretty fibrils. Sci. 326, 1216–1219 (2009). https://doi.org/10.1126/science.1176009

  5. Von der Mark, K.P.J., Bauer, S., Schmuki, P.: Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res. 339, 131–153 (2010)

    Article  Google Scholar 

  6. Kechagia, J.Z., IJaR-CP: Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol.Cell Biol. 20, 457–473 (2019)

    Google Scholar 

  7. Sainio, A.J.H.: Extracellular matrix-cell interactions: focus on therapeutic applications. Cell. Signal. 66, 109487 (2020)

    Article  CAS  Google Scholar 

  8. Köwitsch, A., Zhou, G., Groth, T.: Medical application of glycosaminoglycans: a review. J. Tissue Eng. Regen. Med. 12(1), e23–e41 (2018)

    Article  Google Scholar 

  9. Leng, Y., Abdullah, A., Wendt, M.K., Calve, S.: Hyaluronic acid, CD44 and RHAMM regulate myoblast behavior during embryogenesis. Matrix Biol. 78–79, 236–254 (2019). https://doi.org/10.1016/j.matbio.2018.08.008

    Article  CAS  Google Scholar 

  10. Aggarwal, N., Altgärde, N., Svedhem, S., Zhang, K., Fischer, S., Groth, T.: Effect of molecular composition of heparin and cellulose sulfate on multilayer formation and cell response. Langmuir 29(45), 13853–13864 (2013). https://doi.org/10.1021/la4028157

    Article  CAS  Google Scholar 

  11. Murphy, C.M., Matsiko, A., Haugh, M.G., Gleeson, J.P., O’Brien, F.J.: Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. J. Mech. Behav. Biomed. Mater. 11, 53–62 (2012). https://doi.org/10.1016/j.jmbbm.2011.11.009

    Article  CAS  Google Scholar 

  12. Dvir, T., Timko, B.P., Kohane, D.S., Langer, R.: Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6(1), 13–22 (2011). https://doi.org/10.1038/nnano.2010.246

    Article  CAS  Google Scholar 

  13. Niepel, M.S., Fuhrmann, B., Leipner, H.S., Groth, T.: Nanoscaled surface patterns influence adhesion and growth of human dermal fibroblasts. Langmuir 29(43), 13278–13290 (2013). https://doi.org/10.1021/la402705r

    Article  CAS  Google Scholar 

  14. Rehfeldt, F., Engler, A.J., Eckhardt, A., Ahmed, F., Discher, D.E.: Cell responses to the mechanochemical microenvironment—implications for regenerative medicine and drug delivery. Adv. Drug Deliv. Rev. 59(13), 1329–1339 (2007). https://doi.org/10.1016/j.addr.2007.08.007

    Article  CAS  Google Scholar 

  15. Chu, G., Yuan, Z., Zhu, C., Zhou, P., Wang, H., Zhang, W., Cai, Y., Zhu, X., Yang, H., Li, B.: Substrate stiffness- and topography-dependent differentiation of annulus fibrosus-derived stem cells is regulated by Yes-associated protein. Acta Biomater. 92, 254–264 (2019). https://doi.org/10.1016/j.actbio.2019.05.013

    Article  CAS  Google Scholar 

  16. Aragona, M.P.T., Manfrin, A., Giulitti, S., Michielin, F., Elvassore, N., Dupont, S., Piccolo, S.: A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154(5), 1047–1059 (2013)

    Google Scholar 

  17. Ye, K., Cao, L., Li, S., Yu, L., Ding, J.: Interplay of matrix stiffness and cell-cell contact in regulating differentiation of stem cells. ACS Appl. Mater. Interfaces. 8(34), 21903–21913 (2016). https://doi.org/10.1021/acsami.5b09746

    Article  CAS  Google Scholar 

  18. Lo, C.-M., Wang, H.-B., Dembo, M., Wang, Y.-l: Cell movement is guided by the rigidity of the substrate. Biophys. J . 79(1), 144–152 (2000). https://doi.org/10.1016/S0006-3495(00)76279-5

    Article  CAS  Google Scholar 

  19. McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., Chen, C.S.: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6(4), 483–495 (2004)

    Article  CAS  Google Scholar 

  20. Duan, Y., Yu, S., Xu, P., Wang, X., Feng, X., Mao, Z., Gao, C.: Co-immobilization of CD133 antibodies, vascular endothelial growth factors, and REDV peptide promotes capture, proliferation, and differentiation of endothelial progenitor cells. Acta Biomater. 96, 137–148 (2019). https://doi.org/10.1016/j.actbio.2019.07.004

    Article  CAS  Google Scholar 

  21. Levinson, C., Lee, M., Applegate, L.A., Zenobi-Wong, M.: An injectable heparin-conjugated hyaluronan scaffold for local delivery of transforming growth factor β1 promotes successful chondrogenesis. Acta Biomater. 99, 168–180 (2019). https://doi.org/10.1016/j.actbio.2019.09.017

    Article  CAS  Google Scholar 

  22. Schnabelrauch, M., Scharnweber, D., Schiller, J.: Sulfated glycosaminoglycans as promising artificial extracellular matrix components to improve the regeneration of tissues. Curr. Med. Chem. 20(20), 2501–2523 (2013)

    Article  CAS  Google Scholar 

  23. Zhu, L., Luo, D., Liu, Y.: Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int. J. Oral Sci. 12(1), 6 (2020). https://doi.org/10.1038/s41368-020-0073-y

    Article  CAS  Google Scholar 

  24. Hosoyama, K., Lazurko, C., Muñoz, M., McTiernan, C.D., Alarcon, E.I.: Peptide-based functional Biomaterials for soft-tissue repair. Front. Bioeng. Biotechnol. 7(205) (2019). https://doi.org/10.3389/fbioe.2019.00205

  25. Fu, J., Su, Y., Qin, Y.-X., Zheng, Y., Wang, Y., Zhu, D.: Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc. Biomaterials 230, 119641 (2020). https://doi.org/10.1016/j.biomaterials.2019.119641

    Article  CAS  Google Scholar 

  26. Montazerian, M., Zanotto, E.D.: Bioactive and inert dental glass-ceramics. J. Biomed. Mater. Res. Part A 105(2), 619–639 (2017). https://doi.org/10.1002/jbm.a.35923

    Article  CAS  Google Scholar 

  27. Helmus, M.N., Gibbons, D.F., Cebon, D.: Biocompatibility: meeting a key functional requirement of next-generation medical devices. Toxicol. Pathol. 36(1), 70–80 (2008). https://doi.org/10.1177/0192623307310949

    Article  CAS  Google Scholar 

  28. Rashidi, H., Yang, J., Shakesheff, K.M.: Surface engineering of synthetic polymer materials for tissue engineering and regenerative medicine applications. Biomater. Sci. 2, 1318–1331 (2014)

    Google Scholar 

  29. Corobea, M.S., Albu, M.G., Ion, R., Cimpean, A., Miculescu, F., Antoniac, I.V., Raditoiu, V., Sirbu, I., Stoenescu, M., Voicu, S.I., Ghica, M.V.: Modification of titanium surface with collagen and doxycycline as a new approach in dental implants. J. Adhes. Sci. Technol. 29(23), 2537–2550 (2015). https://doi.org/10.1080/01694243.2015.1073661

    Article  CAS  Google Scholar 

  30. Silva, A.D.R., Pallone, E.M.J.A., Lobo, A.O.: Modification of surfaces of alumina-zirconia porous ceramics with Sr2+ after SBF. J. Aust. Ceram. Soc. 56(2), 517–524 (2020). https://doi.org/10.1007/s41779-019-00360-4

    Article  CAS  Google Scholar 

  31. Hu, C., Ashok, D., Nisbet, D.R., Gautam, V.: Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials 219, 119366 (2019). https://doi.org/10.1016/j.biomaterials.2019.119366

    Article  CAS  Google Scholar 

  32. Iler, R.: Multilayers of colloidal particles. J. Colloid Interface Sci. 21(6), 569–594 (1966)

    Article  CAS  Google Scholar 

  33. Decher, G., Hong, J.D.: Buildup of ultrathin multilayer films by a self‐assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. In: Makromolekulare Chemie. Macromolecular Symposia, vol. 1, pp. 321–327. Wiley Online Library (1991)

    Google Scholar 

  34. Borges, J., Mano, J.F.: Molecular interactions driving the layer-by-layer assembly of multilayers. Chem. Rev. 114(18), 8883–8942 (2014)

    Article  CAS  Google Scholar 

  35. Capila, I., Linhardt, R.J.: Heparin–protein interactions. Angew. Chem. Int. Ed. 41(3), 390–412 (2002)

    Article  CAS  Google Scholar 

  36. Niepel, M.S., Kirchhof, K., Menzel, M., Heilmann, A., Groth, T.: Controlling cell adhesion using pH‐modified polyelectrolyte multilayer films. In: Layer‐by‐Layer Films for Biomedical Applications, pp. 1–30 (2015)

    Google Scholar 

  37. Yang, Y., Köwitsch, A., Ma, N., Mäder, K., Pashkuleva, I., Reis, R.L., Groth, T.: Functionality of surface-coupled oxidised glycosaminoglycans towards fibroblast adhesion. J. Bioact. Compat. Polym. 31(2), 191–207 (2016)

    Article  CAS  Google Scholar 

  38. Martins, G.V., Mano, J.F., Alves, N.M.: Nanostructured self-assembled films containing chitosan fabricated at neutral pH. Carbohyd. Polym. 80(2), 570–573 (2010)

    Article  CAS  Google Scholar 

  39. Aggarwal, N., Altgärde, N., Svedhem, S., Michanetzis, G., Missirlis, Y., Groth, T.: Tuning cell adhesion and growth on biomimetic polyelectrolyte multilayers by variation of pH during layer-by-layer assembly. Macromol. Biosci. 13(10), 1327–1338 (2013)

    Article  CAS  Google Scholar 

  40. Dawlee, S.S.A., Balakrishnan, B., Labarre, D., Jayakrishnan, A.: Oxidized chondroitin sulfate-cross-linked gelatin matrixes: a new class of hydrogels. Biomacromol 6(4), 2040–2048 (2005)

    Article  CAS  Google Scholar 

  41. Wang, D.-A.V.S., Sharma, B., Strehin, I., Fermanian, S., Gorham, J., Fairbrother, D.H., Cascio, B., Elisseeff, J.H.: Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat. Mater. 6(5), 385–392 (2007)

    Article  CAS  Google Scholar 

  42. Johansson, J.Å., Halthur, T., Herranen, M., Söderberg, L., Elofsson, U., Hilborn, J.: Build-up of collagen and hyaluronic acid polyelectrolyte multilayers. Biomacromol 6(3), 1353–1359 (2005). https://doi.org/10.1021/bm0493741

    Article  CAS  Google Scholar 

  43. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2鈭捨斘擟T method. Methods 25(4), 402–408 (2001). https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  44. Boura, C., Menu, P., Payan, E., Picart, C., Voegel, J.C., Muller, S., Stoltz, J.F.: Endothelial cells grown on thin polyelectrolyte mutlilayered films: an evaluation of a new versatile surface modification. Biomaterials 24(20), 3521–3530 (2003). https://doi.org/10.1016/S0142-9612(03)00214-X

    Article  CAS  Google Scholar 

  45. Yoo, D., Shiratori, S.S., Rubner, M.F.: Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules 31(13), 4309–4318 (1998). https://doi.org/10.1021/ma9800360

    Article  CAS  Google Scholar 

  46. Jiang, F., Hörber, H., Howard, J., Müller, D.J.: Assembly of collagen into microribbons: effects of pH and electrolytes. J. Struct. Biol. 148(3), 268–278 (2004). https://doi.org/10.1016/j.jsb.2004.07.001

    Article  CAS  Google Scholar 

  47. Barbani, N., Lazzeri, L., Cristallini, C., Cascone, M.G., Polacco, G., Pizzirani, G.: Bioartificial materials based on blends of collagen and poly (acrylic acid). J. Appl. Polym. Sci. 72(7), 971–976 (1999)

    Article  CAS  Google Scholar 

  48. Taraballi, F., Zanini, S., Lupo, C., Panseri, S., Cunha, C., Riccardi, C., Marcacci, M., Campione, M., Cipolla, L.: Amino and carboxyl plasma functionalization of collagen films for tissue engineering applications. J. Colloid Interface Sci. 394, 590–597 (2013). https://doi.org/10.1016/j.jcis.2012.11.041

    Article  CAS  Google Scholar 

  49. Leceta, I., Guerrero, P., De La Caba, K.: Functional properties of chitosan-based films. Carbohyd. Polym. 93(1), 339–346 (2013)

    Article  CAS  Google Scholar 

  50. Zhao, M., Li, L., Zhou, C., Heyroth, F., Fuhrmann, B., Maeder, K., Groth, T.: Improved stability and cell response by intrinsic cross-linking of multilayers from collagen I and oxidized glycosaminoglycans. Biomacromol 15(11), 4272–4280 (2014). https://doi.org/10.1021/bm501286f

    Article  CAS  Google Scholar 

  51. Wood, B.C.: The formation of fibrils from collagen solutions 3. Effect of chondroitin sulfate and some other naturally occurring polyanions on the rate of formation. Biochem. J. 75(3), 605–612 (1960)

    Google Scholar 

  52. Kvist, A.J., Johnson, A.E., Mörgelin, M., Gustafsson, E., Bengtsson, E., Lindblom, K., Aszódi, A., Fässler, R., Sasaki, T., Timpl, R., Aspberg, A.: Chondroitin sulfate perlecan enhances collagen fibril formation. Implications for perlecan chondrodysplasias. J. Biol. Chem. 281(44), 33127–33139 (2006)

    Google Scholar 

  53. Coelho, N.M., Gonzalez-Garcia, C., Planell, J.A., Salmeron-Sanchez, M., Altankov, G.: Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction. Eur. Cell. Mater. 19, 262–272 (2010)

    Article  Google Scholar 

  54. Köwitsch, A., Yang, Y., Ma, N., Kuntsche, J., Mäder, K., Groth, T.: Bioactivity of immobilized hyaluronic acid derivatives regarding protein adsorption and cell adhesion. Biotechnol. Appl. Biochem. 58(5), 376–389 (2011). https://doi.org/10.1002/bab.41

    Article  CAS  Google Scholar 

  55. Zhao, M.A.R., Groth, T.: Effect of microenvironment on adhesion and differentiation of murine C3H10T1/2 cells cultured on multilayers containing collagen I and glycosaminoglycans. J. Tissue Eng. (2020). https://doi.org/10.1177/2041731420940560

    Article  Google Scholar 

  56. Kirchhof, K., Andar, A., Yin, H.B., Gadegaard, N., Riehle, M.O., Groth, T.: Polyelectrolyte multilayers generated in a microfluidic device with pH gradients direct adhesion and movement of cells. Lab Chip 11(19), 3326–3335 (2011). https://doi.org/10.1039/c1lc20408d

    Article  CAS  Google Scholar 

  57. Jikko, A., Harris, S.E., Chen, D., Mendrick, D.L., Damsky, C.H.: Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J. Bone Miner. Res. 14(7), 1075–1083 (1999)

    Article  CAS  Google Scholar 

  58. Shekaran, A., García, A.J.: Extracellular matrix-mimetic adhesive biomaterials for bone repair. J. Biomed. Mater. Res. Part A 96A(1), 261–272. https://doi.org/10.1002/jbm.a.32979

  59. Lund, A.W., Stegemann Jp Fau-Plopper, G.E., Plopper, G.E.: Inhibition of ERK promotes collagen gel compaction and fibrillogenesis to amplify the osteogenesis of human mesenchymal stem cells in three-dimensional collagen I culture. (1557-8534 (Electronic))

    Google Scholar 

  60. Salasznyk, R.M., Klees Rf Fau-Hughlock, M.K., Hughlock Mk Fau-Plopper, G.E., Plopper, G.E.: ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. (1541-9061 (Print))

    Google Scholar 

  61. Kisiel, M., Klar, A.S., Ventura, M., Buijs, J., Mafina, M.-K., Cool, S.M., Hilborn, J.: Complexation and sequestration of BMP-2 from an ECM mimetic hyaluronan gel for improved bone formation. PloS one 8(10) (2013)

    Google Scholar 

  62. Salmerón-Sánchez, M., Dalby, M.J.: Synergistic growth factor microenvironments. Chem. Commun. 52(91), 13327–13336 (2016)

    Article  Google Scholar 

  63. Fourel, L., Valat, A., Faurobert, E., Guillot, R., Bourrin-Reynard, I., Ren, K., Lafanechère, L., Planus, E., Picart, C., Albiges-Rizo, C.: β3 integrin–mediated spreading induced by matrix-bound BMP-2 controls Smad signaling in a stiffness-independent manner. J. Cell Biol. 212(6), 693–706 (2016)

    Article  CAS  Google Scholar 

  64. Jiao, X., Billings, P.C., O’Connell, M.P., Kaplan, F.S., Shore, E.M., Glaser, D.L.: Heparan sulfate proteoglycans (HSPGs) modulate BMP2 osteogenic bioactivity in C2C12 cells. J. Biol. Chem. 282(2), 1080–1086 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support to R.A by the International Graduate School AGRIPOLY supported by the European Regional Development Fund (ERDF) and the Federal State Saxony-Anhalt is greatly acknowledged. We are also thankful for the financial support that was also provided by a grant form Deutsche Forschungsgemeinschaft to TG (Gr1290/11-1). The National Natural Science Foundation of China (32071326), the Natural Science Foundation of Guangdong Province, China (2019A1515011613, 2021A1515011196), the Zhanjiang competitive funding project, China (2018A01032, 2020A01018) and the Characteristic innovation projects of Guangdong Province universities (2018KTSCX076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Groth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anouz, R., Zhao, M., Gong, F., Groth, T. (2023). Tailoring the Microenvironment of Cells Towards Osteogenic Differentiation Using Multilayers of Glycosaminoglycans and Growth Factor Immobilization. In: Najman, S., et al. Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-17269-4_1

Download citation

Publish with us

Policies and ethics

Navigation