Cross-Stream Interactions: Segmentation of Lung Adenocarcinoma Growth Patterns

  • Conference paper
  • First Online:
Computational Mathematics Modeling in Cancer Analysis (CMMCA 2022)

Abstract

Lung adenocarcinoma has histologically distinct growth patterns that have been associated with patient prognosis. Precision segmentation of growth patterns in routine histology samples is challenging due to the complexity of patterns and high intra-class variability. In this paper, we present a novel model with a multi-stream architecture, Cross-Stream Interactions (CroSIn), which fully considers crucial interactions across scales to gather abundant information. The first-order attention introduces contextual information at an early stage to guide low-level feature encoding. The second-order attention then focuses on learning high-level feature relations among scales to extract discriminative features. Experimental results show interactions at both low- and high-level feature learning stages are crucial in performance improvement. The proposed method outperforms state-of-the-art networks, achieving an average Dice of \(60.34\%\) at patch level, and an average accuracy of \(65.31\%\) at sample level, which is also verified in an independent cohort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 46.00
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 58.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AbdulJabbar, K., Raza, S.E.A., Rosenthal, R., Jamal-Hanjani, M., Veeriah, S., et al.: Geospatial immune variability illuminates differential evolution of lung adenocarcinoma. Nat. Med. 26(7), 1054–1062 (2020)

    Article  Google Scholar 

  2. Alsubaie, N., Shaban, M., Snead, D., Khurram, A., Rajpoot, N.: A multi-resolution deep learning framework for lung adenocarcinoma growth pattern classification. In: Nixon, M., Mahmoodi, S., Zwiggelaar, R. (eds.) MIUA 2018. CCIS, vol. 894, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95921-4_1

    Chapter  Google Scholar 

  3. Chen, H., Qi, X., Yu, L., Heng, P.A.: Dcan: deep contour-aware networks for accurate gland segmentation. In: CVPR, pp. 2487–2496 (2016)

    Google Scholar 

  4. Chen, L.C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: scale-aware semantic image segmentation. In: CVPR, pp. 3640–3649 (2016)

    Google Scholar 

  5. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV, pp. 801–818 (2018)

    Google Scholar 

  6. Chen, S., Tan, X., Wang, B., Hu, X.: Reverse attention for salient object detection. In: ECCV, pp. 234–250 (2018)

    Google Scholar 

  7. Coudray, N., Ocampo, P.S., Sakellaropoulos, T., Narula, N., Snuderl, M., et al.: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24(10), 1559–1567 (2018)

    Article  Google Scholar 

  8. Feng, Z., Wang, Z., Wang, X., Mao, Y., Li, T., et al.: Mutual-complementing framework for nuclei detection and segmentation in pathology image. In: CVPR, pp. 4036–4045 (2021)

    Google Scholar 

  9. Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., et al.: Dual attention network for scene segmentation. In: CVPR, pp. 3146–3154 (2019)

    Google Scholar 

  10. Gertych, A., Swiderska-Chadaj, Z., Ma, Z., Ing, N., Markiewicz, T., et al.: Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides. Sci. Rep. 9(1), 1–12 (2019)

    Article  Google Scholar 

  11. Graham, S., Chen, H., Gamper, J., Dou, Q., Heng, P.A., et al.: Mild-net: minimal information loss dilated network for gland instance segmentation in colon histology images. Med. Image Anal. 52, 199–211 (2019)

    Article  Google Scholar 

  12. Hashimoto, N., Fukushima, D., Koga, R., Takagi, Y., Ko, K., et al.: Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images. In: CVPR, pp. 3852–3861 (2020)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  14. Huang, Q., **a, C., Wu, C., Li, S., Wang, Y., et al.: Semantic segmentation with reverse attention. In: BMVC (2017)

    Google Scholar 

  15. Kadota, K., Yeh, Y.C., Sima, C.S., Rusch, V.W., Moreira, A.L., et al.: The cribriform pattern identifies a subset of acinar predominant tumors with poor prognosis in patients with stage i lung adenocarcinoma: a conceptual proposal to classify cribriform predominant tumors as a distinct histologic subtype. Mod. Pathol. 27(5), 690–700 (2014)

    Article  Google Scholar 

  16. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: ICCV, pp. 1449–1457 (2015)

    Google Scholar 

  17. Liu, D., Zhang, D., Song, Y., Zhang, F., O’Donnell, L., et al.: Unsupervised instance segmentation in microscopy images via panoptic domain adaptation and task re-weighting. In: CVPR, pp. 4243–4252 (2020)

    Google Scholar 

  18. Moore, D.A., et al.: In situ growth in early lung adenocarcinoma may represent precursor growth or invasive clone outgrowth-a clinically relevant distinction. Mod. Pathol. 32(8), 1095–1105 (2019)

    Article  Google Scholar 

  19. Moreira, A.L., Ocampo, P.S., **a, Y., Zhong, H., Russell, P.A., et al.: A grading system for invasive pulmonary adenocarcinoma: a proposal from the international association for the study of lung cancer pathology committee. J. Thorac. Oncol. 15(10), 1599–1610 (2020)

    Article  Google Scholar 

  20. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., et al.: Attention u-net: learning where to look for the pancreas. In: MIDL (2018)

    Google Scholar 

  21. Qaiser, T., Tsang, Y.W., Taniyama, D., Sakamoto, N., Nakane, K., et al.: Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features. Med. Image Anal. 55, 1–14 (2019)

    Article  Google Scholar 

  22. Sirinukunwattana, K., Pluim, J.P.W., Chen, H., Qi, X., Heng, P., et al.: Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017)

    Article  Google Scholar 

  23. Tokunaga, H., Iwana, B.K., Teramoto, Y., Yoshizawa, A., Bise, R.: Negative pseudo labeling using class proportion for semantic segmentation in pathology. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 430–446. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_26

    Chapter  Google Scholar 

  24. Tokunaga, H., Teramoto, Y., Yoshizawa, A., Bise, R.: Adaptive weighting multi-field-of-view CNN for semantic segmentation in pathology. In: CVPR, pp. 12597–12606 (2019)

    Google Scholar 

  25. Travis, W.D., Brambilla, E., Nicholson, A.G., Yatabe, Y., Austin, J.H., et al.: The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J. Thorac. Oncol. 10(9), 1243–1260 (2015)

    Article  Google Scholar 

  26. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: gated axial-attention for medical image segmentation. In: MICCAI (2021)

    Google Scholar 

  27. Wang, X., Fang, Y., Yang, S., Zhu, D., Wang, M., et al.: A hybrid network for automatic hepatocellular carcinoma segmentation in H &E-stained whole slide images. Med. Image Anal. 68, 101914 (2021)

    Article  Google Scholar 

  28. Warth, A., Muley, T., Kossakowski, C., Stenzinger, A., Schirmacher, P., et al.: Prognostic impact and clinicopathological correlations of the cribriform pattern in pulmonary adenocarcinoma. J. Thorac. Oncol. 10(4), 638–644 (2015)

    Article  Google Scholar 

  29. Wei, J.W., Tafe, L.J., Linnik, Y.A., Vaickus, L.J., Tomita, N., Hassanpour, S.: Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci. Rep. 9(1), 1–8 (2019)

    Google Scholar 

  30. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: ECCV, pp. 3–19 (2018)

    Google Scholar 

  31. Yu, C., Zhao, X., Zheng, Q., Zhang, P., You, X.: Hierarchical bilinear pooling for fine-grained visual recognition. In: ECCV, pp. 574–589 (2018)

    Google Scholar 

  32. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR, pp. 2881–2890 (2017)

    Google Scholar 

  33. Zhou, Y., Chen, H., Xu, J., Dou, Q., Heng, P.-A.: IRNet: instance relation network for overlap** cervical cell segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 640–648. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_71

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinyin Yuan .

Editor information

Editors and Affiliations

Appendix

Appendix

(Figures 3, 4, 5 Table 5).

Fig. 3.
figure 3

Instances of segmentation results for ablation study, showing the effectiveness of the first- and second-order attention modules. (a) Ground truth. (b) Single Stream. (c) Multi-ADD. (d) Multi-FO. (e) Multi-SO. (f) Multi-FO & SO.

Fig. 4.
figure 4

Segmentation instances at WSI level from different comparison methods. (a) Original WSI with acinar as predominant pattern (red). (b) attention U-Net. (c) DeepLabV3+. (d) DANet. (e) Medical Transformer. (f) Proposed CroSIn. (Color figure online)

Table 5. Performance comparison at WSI level via predominant pattern and subtype percentages (%) for results in Fig. A2, and the bold text indicates predominant pattern. The result obtained from CroSIn is in line with ground truth in terms of predominant pattern. DeepLabV3+ and DANet can also give the correct predominant pattern, acinar, but with a slight margin to the papillary and lepidic, respectively. Both attention U-Net and Medical Transformer (MedT) yield papillary as predominant pattern, which are mispredicted.
Fig. 5.
figure 5

Instances of patch-level results from different comparison methods, suggesting the advantage of the proposed model. (a) Ground truth. (b) attention U-Net. (c) DeepLabV3+. (d) DANet. (e) Medical Transformer. (f) Proposed CroSIn.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, X. et al. (2022). Cross-Stream Interactions: Segmentation of Lung Adenocarcinoma Growth Patterns. In: Qin, W., Zaki, N., Zhang, F., Wu, J., Yang, F. (eds) Computational Mathematics Modeling in Cancer Analysis. CMMCA 2022. Lecture Notes in Computer Science, vol 13574. Springer, Cham. https://doi.org/10.1007/978-3-031-17266-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17266-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17265-6

  • Online ISBN: 978-3-031-17266-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation