Marine Bacteria for Bioremediation

  • Chapter
  • First Online:
Marine Organisms: A Solution to Environmental Pollution?

Abstract

Marine pollution has been increasing over the years and can impact directly living organisms. The continued pollution of soil and fresh water by agriculture, industrial and urban activities frequently reaches the rivers and the ocean by run over polluting from these environments. Bioremediation is an eco-friendly technique that can immobilize, reduce damage, inactivate or remove contaminants using living organisms or their structures or products for cleaning up the environment. The technique used for bioremediation depends on the type of contaminant, including structure, oxidation stage, complexation form. Bacteria are recognized as important agents in bioremediation processes, including removal of heavy metals, biodegradation of polyaromatic and halogenated hydrocarbons, petroleum and diesel, and biodegradation of plastics. Marine bacteria present a great diversity of metabolic activities and their potential for bioremediation is still poorly exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017) The role of microorganisms in bioremediation: a review. Open J Environ Biol 2:38–46

    Article  Google Scholar 

  • Abd-Elnaby H, Abou-Elela GM, El-Sersy NA (2011) Cadmium resisting bacteria in Alexandria Eastern Harbor (Egypt) and optimization of cadmium bioaccumulation by Vibrio harveyi. African J Biotechnol 10:3412–3423

    Article  CAS  Google Scholar 

  • Adam IKU, Duarte AM, Pathmanathan J, Miltner A, Brüls T, Kästner M (2017) Microbial communities in pyrene amended soil compost mixture and fertilized soil. AMB Expr 7:7

    Article  Google Scholar 

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremed Biodegrad 3:28–39

    CAS  Google Scholar 

  • Agarry S, Latinwo GK (2015) Biodegradation of diesel oil in soil and its enhancement by application of bioventing and amendment with brewery waste effluents as biostimulating-bioaugmentation agents. J Ecol Eng 16:82–91

    Article  Google Scholar 

  • Ahemad M (2019) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem 12:1365–1377

    Article  CAS  Google Scholar 

  • Akinde SB, Iwuozor CC, Obire O (2012) Alkane degradative potentials of bacteria isolated from the deep Atlantic Ocean of the Gulf of Guinea. J Bioremed Biodegr 3:2–6

    Article  Google Scholar 

  • Akram MS, Rashid N, Basheer S (2021) Physiological and molecular basis of plants tolerance to linear halogenated hydrocarbons. In: Hasanuzzaman M, Prasad NMV (eds) Handbook of bioremediation. Academic Press, New York, pp 591–602

    Chapter  Google Scholar 

  • Ali A, Guo D, Mahar A, Wang P, Shen F, Li R, Zhang Z (2017) Mycoremediation of potentially toxic trace elements - a biological tool for soil clean up: a review. Pedosphere 27:205–222

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019:6730305

    Article  Google Scholar 

  • Amidei R (1997) Marine bacteria: a better cleaner-upper? Calif Agric 51:47–48

    Article  Google Scholar 

  • Anderson C, Juday G (2016) Mycoremediation of petroleum: a literature review. J Environ Sci Eng A5:397–405

    Google Scholar 

  • Andreolli M, Lampis S, Brignoli P, Vallini G (2015) Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: a comparative study. J Environ Manag 153C:121–130

    Article  Google Scholar 

  • Arslan M, Imran A, Khan QM, Afzal M (2017) Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res 24:4322–4336

    Article  Google Scholar 

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in US history. Environ Sci Technol 45:6709–6715

    Article  CAS  Google Scholar 

  • Atlas RM, Philp J (2005) Bioremediation. Applied microbial solutions for real-world environmental cleanup. ASM Press, Washington, p 370

    Book  Google Scholar 

  • Ayangbenro AS, Olanrewaju OS, Babalola OO (2018) Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Front Microbiol 9:1986

    Article  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques -classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:180

    Article  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2020) Bioremediation: an eco-friendly sustainable technology for environmental management. In: Saxena G, Bharagava R (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 19–39

    Chapter  Google Scholar 

  • Balseiro-Romero M, Gkorezis P, Kidd PS, Van Hamme J, Weyens N, Monterroso C, Vangronsveld J (2017) Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation. Int J Phytoremediation 19:955–963

    Article  CAS  Google Scholar 

  • Bao MT, Wang LN, Sun PY, Cao LX, Zou J, Li YM (2012) Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment. Mar Pollut Bull 64:1177–1185

    Article  CAS  Google Scholar 

  • Benyahia F, Embaby AS (2016) Bioremediation of crude oil contaminated desert soil: effect of biostimulation, bioaugmentation and bioavailability in biopile treatment systems. Int J Environ Res Public Health 13:219

    Article  Google Scholar 

  • Beygmoradi A, Homaei A (2017) Marine microbes as a valuable resource for brand new industrial biocatalysts. Biocatal Agric Biotechnol 11:131–152

    Article  Google Scholar 

  • Bharagava RN, Purchase D, Saxena G, Mulla I (2019) Applications of metagenomics in microbial bioremediation of pollutants: from genomics to environmental cleanup. In: Das S, Dash HR (eds) Microbial diversity in the genomic era. Elsevier, New York, pp 459–477

    Chapter  Google Scholar 

  • Blindauer CA (2011) Bacterial metallothioneins: past, present, and questions for the future. J Biol Inorg Chem 16:1011–1024

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Bougarne L, Abbou MB, El Haji M, Bouka H (2019) Consequences of surface water eutrophication: remedy and environmental interest. Mater Today: Proceed 13:654–662

    CAS  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90

    Article  CAS  Google Scholar 

  • Brim H, Venkateswaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582

    Article  CAS  Google Scholar 

  • Cachada A, Rocha-Santos T, Duarte AC (2018) Soil and pollution: an introduction to the main issues. In: Duarte AC, Cachada A, Rocha-Santos T (eds) Soil Pollution. Academic Press, New York, pp 1–28

    Google Scholar 

  • Cai D, Yang X, Wang S, Chao Y, Morel JL, Qiu R (2017) Effects of dissolved organic matter derived from forest leaf litter on biodegradation of phenanthrene in aqueous phase. J Hazard Mater 324:516–525

    Article  CAS  Google Scholar 

  • Carson HS, Nerheim MS, Carroll KA, Eriksen M (2013) The plastic-associated microorganisms of the North Pacific gyre. Mar Pollut Bull 75:126–132

    Article  CAS  Google Scholar 

  • Caruso C, Rizzo C, Mangano S, Poli A, Di Donato P, Finore I, Nucolaus B, Di Marco B, Michaud L, Giudice AL (2018a) Production and biotechnological potential of extracellular polymeric substances from sponge-associated Antarctic bacteria. Appl Environ Microbiol 84:e01624–e01617

    Article  Google Scholar 

  • Caruso C, Rizzo C, Mangano S, Poli A, Di Donato P, Nicolaus B, Di Marco B, Michaud L, Giudice AL (2018b) Extracellular polymeric substances with metal adsorption capacity produced by Pseudoalteromonas sp. MER144 from Antarctic seawater. Environ Sci Pollut Res 25:4667–4677

    Article  CAS  Google Scholar 

  • Catania V, Santisi S, Signa G, Vizzini S, Mazzola A, Cappello S, Yakimov MM, Quatrini P (2015) Intrinsic bioremediation potential of a chronically polluted marine coastal area. Mar Pollut Bull 99:138–149

    Article  CAS  Google Scholar 

  • Chung WK, King GM (2001) Isolation, characterization, and polyaromatic hydrocarbon degradation potential of aerobic bacteria from marine macrofaunal burrow sediments and description of Lutibacterium anuloederans gen. Nov., sp. nov., and Cycloclasticus spirillensus sp. nov. Appl Environ Microbiol 67:5585–5592

    Article  CAS  Google Scholar 

  • Colwell RR, Walker JD, Cooney JJ (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. Crit Rev Microbiol 5:423–445

    Article  CAS  Google Scholar 

  • Cornu JY, Huguenot D, Jézéquel K, Lollier M, Lebeau T (2017) Bioremediation of copper-contaminated soils by bacteria. World J Microbiol Biotechnol 33:26

    Article  Google Scholar 

  • CRC (2018) Contamination assessment and remediation of the environment national remediation framework technology guide: bioremediation Version 0.1. https://www.crccare.com/files/dmfile/CTechguide_Bioremediation_Rev0.pdf

  • Cunningham CJ, Philip JC (2000) Comparison of bioaugmentation and biostimulation in ex situ treatment of diesel contaminated soil. Land Contam Reclamat 8:261–269

    Google Scholar 

  • Dale PJ, Clarke B, Fontes EM (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574

    Article  CAS  Google Scholar 

  • Dang TCH, Nguyen DT, Thai H, Nguyen TC, Tran TTH, Le VH, Nguyen VH, Tran XB, Pham TPT, Nguyen TG (2018) Plastic degradation by thermophilic bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam. Adv Nat Sci Nanosci Nanotechnol 9:015014

    Article  Google Scholar 

  • Dangi AK, Sharma B, Hill RT, Shukla P (2019) Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol 39:79–98

    Article  CAS  Google Scholar 

  • Das S, Dash HR (2014) Microbial bioremediation: a potential tool for restoration of contaminated areas. In: Das S (ed) Microbial biodegradation and bioremediation. Elsevier, New York, pp 1–21

    Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and importance of bacterial mer genes. Int Biodeter Biodegrad 75:207–213

    Article  CAS  Google Scholar 

  • Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571

    Article  CAS  Google Scholar 

  • Dash HR, Mangwani N, Das S (2014) Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium bacillus thuringiensis PW-05. Environ Sci Pollut Res 21:2642–2653

    Article  CAS  Google Scholar 

  • Datta S, Rajnish KN, Samuel MS, Pugazlendhi A, Selvarajan E (2020) Metagenomic applications in microbial diversity, bioremediation, pollution monitoring, enzyme and drug discovery. A review Environ Chem Lett 18:1229–1241

    Article  CAS  Google Scholar 

  • De Almeida DG, Soares Da Silva RDCF, Luna JM, Rufino RD, Santos VA, Banat IM, Sarubbo LA (2016) Biosurfactants: promising molecules for petroleum biotechnology advances. Front Microbiol 7:1718

    Article  Google Scholar 

  • De Lorenzo V (2009) Recombinant bacteria for environmental release: what went wrong and what we have learnt from it. Clin Microbiol Infect 15:63–65

    Article  Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10:471–477

    Article  CAS  Google Scholar 

  • De J, Sarkar A, Ramaiah N (2006) Bioremediation of toxic substances by mercury resistant marine bacteria. Ecotoxicology 15:385–389

    Article  CAS  Google Scholar 

  • Decho AW, Gutierrez T (2017) Microbial extracellular polymeric substances (EPSs) in ocean systems. Front Microbiol 8:922

    Article  Google Scholar 

  • Deepika KV, Sheela GM, Bramhachari PV (2021) Marine microbial biosurfactants: ecological and environmental applications. In: Gothandam KM, Ranjan S, Dasgupta N, Lichtfouse E (eds) Environmental biotechnology, vol 3. Springer, Cham, pp 221–232

    Google Scholar 

  • Devi RS, Ramya R, Kannan K, Antony AR, Kannan VR (2019) Investigation of biodegradation potentials of high density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Mar Pollut Bull 138:549–560

    Article  Google Scholar 

  • Dias RL, Ruberto L, Calabró A, Balbo AL, Del Panno MT, MacCormack WP (2015) Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 38:677–687

    Article  Google Scholar 

  • Divya B, Deepak Kumar M (2011) Plant–microbe interaction with enhanced bioremediation. Res J Biotechnol 6:4

    Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  CAS  Google Scholar 

  • Duran R, Cravo-Laureau C (2016) Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 40:814–830

    Article  CAS  Google Scholar 

  • Durval IJB, Resende AHM, Figueiredo MA, Luna JM, Rufino RD, Sarubbo LA (2019) Studies on biosurfactants produced using Bacillus cereus isolated from seawater with biotechnological potential for marine oil-spill bioremediation. J Surfactant Deterg 22:349–363

    Article  CAS  Google Scholar 

  • Dvořák P, Nikel PI, Damborský J, De Lorenzo V (2017) Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol Adv 35:845–866

    Article  Google Scholar 

  • Enerijiofi KE (2021) Bioremediation of environmental contaminants: a sustainable alternative to environmental management. In: Saxena G, Kumar V, Shah MP (eds) Bioremediation for environmental sustainability. Elsevier, New York, pp 461–480

    Chapter  Google Scholar 

  • EPA (2001) Remediation case studies. Federal Remediation Technology Roundtable. Report No. 542-F-01-032. US Environmental Protection Agency, Washington

    Google Scholar 

  • EPA (2002) Handbook on in situ treatment of hazardous waste contaminated soils. US Environmental Protection Agency, Washington

    Google Scholar 

  • Ezezika OC, Singer PA (2010) Genetically engineered oil-eating microbes for bioremediation: prospects and regulatory challenges. Technol Soc 32:331–335

    Article  Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173

    Article  Google Scholar 

  • Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R, Burghardt J, Chung AP, Da Costa MS (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Evol Microbiol 47:939–947

    CAS  Google Scholar 

  • French KE, Zhou Z, Terry N (2020) Horizontal ‘gene drives’ harness indigenous bacteria for bioremediation. Sci Rep 10:15091

    Article  CAS  Google Scholar 

  • Gadd GM (2001) Fungi in Bioremediation. Cambridge University Press, Cambridge, p 481

    Book  Google Scholar 

  • Gao J, Ming J, Xu M, Fu X, Duan LF, Xu CC, Gao Y, Xue J-L, **ao XF (2021) Isolation and characterization of a high-efficiency marine diesel oil-degrading bacterium. Pet Sci 18:641–653

    Article  CAS  Google Scholar 

  • Gärdes A, Iversen MH, Grossart HP, Passow U, Ullrich MS (2011) Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J 5:436–445

    Article  Google Scholar 

  • Gentry T, Rensing C, Pepper IAN (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494

    Article  CAS  Google Scholar 

  • Gewert B, Plassmann MM, MacLeod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci: Proc Impacts 17:1513–1521

    CAS  Google Scholar 

  • Ghangrekar MM, Sathe SM, Chakraborty I (2020) In Situ bioremediation techniques for the removal of emerging contaminants and heavy metals using hybrid microbial electrochemical technologies. In: Shah MP, Rodriguez-Couto S, Sengör S (eds) Emerging technologies in environmental bioremediation. Elsevier, New York, pp 233–256

    Chapter  Google Scholar 

  • Ghosh M, Singh S (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Article  Google Scholar 

  • Girma G (2015) Microbial bioremediation of some heavy metals in soils: an updated review. Egyptian Acad J Biol Sci 7:29–45

    Google Scholar 

  • Giudice AL, Poli A, Finore I, Rizzo C (2020) Peculiarities of extracellular polymeric substances produced by Antarctic bacteria and their possible applications. Appl Microbiol Biotechnol 104:2923–2934

    Article  Google Scholar 

  • Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7:1836

    Article  Google Scholar 

  • Goldberg D (1995) A review of the biodegradability and utility of poly (caprolactone). J Environ Polym Degrad 3:61–67

    Article  CAS  Google Scholar 

  • Goris J, De Vos P, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K, Vandamme P (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51:1773–1782

    Article  CAS  Google Scholar 

  • Gu W, Li X, Li Q, Hou Y, Zheng M, Li Y (2021) Combined remediation of polychlorinated naphthalene-contaminated soil under multiple scenarios: an integrated method of genetic engineering and environmental remediation technology. J Hazard Mater 405:124139

    Article  CAS  Google Scholar 

  • Haritash AK (2020) A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 202:2033–2058

    Article  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  Google Scholar 

  • Hazen TC (2010) Biostimulation. In: Timmis KN, McGenity T, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 4517–4530

    Chapter  Google Scholar 

  • Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT (1999) Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. Nov., sp. nov. Appl Environ Microbiol 65:251–259

    Article  CAS  Google Scholar 

  • Helmy M, Smith D, Selvarajoo K (2020) Systems biology approaches integrated with artificial intelligence for optimized food-focused metabolic engineering. Metab Eng Commun 11:e00149

    Article  Google Scholar 

  • Höhener P, Ponsin V (2014) In situ vadose zone bioremediation. Curr Op Biotechnol 27:1–7

    Article  Google Scholar 

  • Hong X, Zhao Y, Zhuang R, Liu J, Guo G, Chen J, Yao Y (2020) Bioremediation of tetracycline antibiotics-contaminated soil by bioaugmentation. RSC Adv 10:33086–33102

    Article  CAS  Google Scholar 

  • Huang Y, **ao L, Li F, **ao M, Lin D, Long X, Wu Z (2018) Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review. Molecules 23:2313

    Article  Google Scholar 

  • Hutchins SR, Davidson MS, Brierley JA, Brierley CL (1986) Microorganisms in reclamation of metals. Annu Rev Microbiol 40:311–336

    Article  CAS  Google Scholar 

  • Igiri BE, Okoduwa SI, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018:2568038

    Article  Google Scholar 

  • Ilyas S, Chi RA, Lee JC (2013) Fungal bioleaching of metals from mine tailing. Min Process Extr Met Rev 34:185–194

    Article  CAS  Google Scholar 

  • Imron MF, Kurniawan SB, Ismail NI, Abdullah SRS (2020) Future challenges in diesel biodegradation by bacteria isolates: a review. J Clean Prod 251:119716

    Article  CAS  Google Scholar 

  • Işıldar A, Van de Vossenberg J, Rene ER, Van Hullebusch ED, Lens PNL (2016) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag 57:149–157

    Article  Google Scholar 

  • Iyer A, Mody K, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull 50:340–343

    Article  CAS  Google Scholar 

  • Jacques P (2011) Surfactin and other lipopeptides from bacillus spp. In: Soberón-Chávez G (ed) Biosurfactants. Springer, Heidelberg, pp 57–91

    Chapter  Google Scholar 

  • Jagannath A, Vidya SK, Saidutta MB (2017) Bioleaching of copper from electronic waste using Acinetobacter sp. Cr B2 in a pulsed plate column operated in batch and sequential batch mode. J Environ Chem Eng 5:1599–1607

    Article  CAS  Google Scholar 

  • Jalali K, Baldwin SA (2000) The role of sulphate reducing bacteria in copper removal from aqueous sulphate solutions. Water Res 34:797–806

    Article  CAS  Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347:768–771

    Article  CAS  Google Scholar 

  • Jang KY, Cho SM, Seok SJ, Kong WS, Kim GH, Sung JM (2009) Screening of biodegradable function of indigenous lingo-degrading mushroom using dyes. Mycobiology 4:53–61

    Article  Google Scholar 

  • Janssen DB, Stucki G (2020) Perspectives of genetically engineered microbes for groundwater bioremediation. Environ Sci Process Impacts 22:487–499

    Article  CAS  Google Scholar 

  • Jeevanantham S, Saravanan A, Hemavathy RV, Kumar PS, Yaashikaa PR, Yuvaraj D (2019) Removal of toxic pollutants from water environment by phytoremediation: a survey on application and future prospects. Environ Technol Innov 13:264–276

    Article  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature 296:643–645

    Article  Google Scholar 

  • Jroundi F, Martinez-Ruiz F, Merroun ML, Gonzalez-Muñoz MT (2020) Exploring bacterial community composition in Mediterranean deep-sea sediments and their role in heavy metal accumulation. Sci Total Environ 712:135660

    Article  CAS  Google Scholar 

  • Kapahi M, Sachdeva S (2019) Bioremediation options for heavy metal pollution. J Health Pollut 9:191203

    Article  Google Scholar 

  • Kaushal J, Khatri M, Arya SK (2021) Recent insights into enzymatic degradation of plastics prevalent in the environment: a mini review. Clean Eng Technol 2:1000083

    Google Scholar 

  • Kim J, Lee AH, Chang W (2018) Enhanced bioremediation of nutrient-amended petroleum hydrocarbon contaminated soil over a cold climate winter: the rate and extent of hydrocarbon biodegradation and microbial response in a pilot-scale biopile subjected to natural seasonal freeze-thaw temperatures. Sci Total Environ 612:903–913

    Article  CAS  Google Scholar 

  • Kiran MG, Pakshirajan K, Das G (2017) Heavy metal removal from multicomponent system by sulfate reducing bacteria: mechanism and cell surface characterization. J Hazard Mater 324:62–70

    Article  CAS  Google Scholar 

  • Kocur CM, Lomheim L, Molenda O, Weber KP, Austrins LM, Sleep BE, Boparai HK, Edwards EA, O’Carroll DM (2016) Long-term field study of microbial community and dechlorinating activity following carboxymethyl cellulose-stabilized nanoscale zero-valent iron injection. Environ Sci Technol 50:7658–7670

    Article  CAS  Google Scholar 

  • Koolivand A, Saeedi R, Coulon F, Kumar V, Villaseñor J, Asghari F, Hesampoor F (2020) Bioremediation of petroleum hydrocarbons by vermicomposting process bioaugmentated with indigenous bacterial consortium isolated from petroleum oily sludge. Ecotoxicol Environ Saf 198:110645

    Article  CAS  Google Scholar 

  • Koshlaf E, Ball AS (2017) Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiol 3:25

    Article  CAS  Google Scholar 

  • Krishna IM, Manickam V, Shah A, Davergave N (2017) Environmental management: science and engineering for industry. Butterworth-Heinemann, Oxford, p 664

    Google Scholar 

  • Kumar PS, Gunasundari E (2018) Bioremediation of heavy metals. In: Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B (eds) Bioremediation: applications for environmental protection and management. Springer, Singapore, pp 165–196

    Chapter  Google Scholar 

  • Kumar V, Shahi SK, Singh S (2018a) Bioremediation: an eco-sustainable approach for restoration of contaminated sites. In: Singh J, Sharma D, Kumar G, Sharma N (eds) Microbial bioprospecting for sustainable development. Springer, Singapore, pp 115–136

    Chapter  Google Scholar 

  • Kumar NM, Muthukumaran C, Sharmila G, Gurunathan B (2018b) Genetically modified organisms and its impact on the enhancement of bioremediation. In: Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B (eds) Bioremediation: applications for environmental protection and management. Springer, Singapore, pp 56–76

    Google Scholar 

  • Kumar A, Tripti PMNV, Maiti SK, Favas PJC (2018c) Mycoremediation of mine site rehabilitation. In: Prasad MNV, Favas PJC, Maiti SK (eds) Bio-Geotechnologies of mine site rehabilitation. Elsevier, New York, pp 233–260

    Chapter  Google Scholar 

  • Kumari A, Chaudhary DR (2020) Engineered microbes and evolving plastic bioremediation technology. In: Pandey VC, Singh V (eds) Bioremediation of pollutants. Elsevier, New York, pp 417–443

    Chapter  Google Scholar 

  • Kushwaha A, Hans N, Kumar S, Rani R (2018) A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf 147:1035–1045

    Article  CAS  Google Scholar 

  • Lee DW, Lee H, Lee AH, Kwon BO, Khim JS, Yim UH, Kim BS, Kim JJ (2018) Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea. Environ Pollut 234:503–512

    Article  CAS  Google Scholar 

  • Leni Z, Künzi L, Geiser M (2020) Air pollution causing oxidative stress. Curr Op Toxicol 20:1–8

    Google Scholar 

  • Leong YK, Chang JS (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol 303:122886

    Article  CAS  Google Scholar 

  • Li F, Zhou T (2020) Effects of objective and subjective environmental pollution on Well-being in urban China: a structural equation model approach. Soc Sci Med 249:112859

    Article  Google Scholar 

  • Li X, Lan SM, Zhu ZP, Zhang C, Zeng GM, Liu YG, Cao WC, Song B, Yang H, Wang SF, Wu SH (2018) The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: a review. Ecotoxicol Environ Saf 158:162–170

    Article  CAS  Google Scholar 

  • Li Z, Wei R, Gao M, Ren Y, Yu B, Nie K, Xu H, Liu L (2020) Biodegradation of low-density polyethylene by Microbulbiferhydrolyticus IRE-31. J Environ Manag 263:110402

    Article  CAS  Google Scholar 

  • Lim MW, Lau EV, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil–present works and future directions. Mar Pollut Bull 109:14–45

    Article  CAS  Google Scholar 

  • Liu F, Zhang G, Liu S, Fu Z, Chen J, Ma C (2018) Bioremoval of arsenic and antimony from wastewater by a mixed culture of sulfate-reducing bacteria using lactate and ethanol as carbon sources. Int Biodeter Biodegrad 126:152–159

    Article  CAS  Google Scholar 

  • Liu L, Bilal M, Duan X, Iqbal HM (2019) Mitigation of environmental pollution by genetically engineered bacteria–current challenges and future perspectives. Sci Total Environ 667:444–454

    Article  CAS  Google Scholar 

  • Ma N, Sun C (2021) Cadmium sulfide nanoparticle biomineralization and biofilm formation mediate cadmium resistance of the deep-sea bacterium Pseudoalteromonas sp. MT33b. Environ Microbiol Rep 13:325–336

    Article  CAS  Google Scholar 

  • Malhotra A, Dolma K, Kaur N, Rathore YS, Mayilraj S, Choudhury AR (2013) Biosynthesis of gold and silver nanoparticles using a novel marine strain of Stenotrophomonas. Bioresour Technol 142:727–731

    Article  CAS  Google Scholar 

  • Malode SN, Nayana S, Shirbhate H (2013) A review on phytoremediation: a novel strategy for the removal of toxic metals and contaminants from the environment by using plants. Bionano Frontier 6:74–79

    Google Scholar 

  • Mangwani N, Shukla SK, Kumari S, Rao TS, Das S (2014) Characterization of Stenotrophomonas acidaminiphila NCW-702 biofilm for implication in the degradation of polycyclic aromatic hydrocarbons. J Appl Microbiol 117:1012–1024

    Article  CAS  Google Scholar 

  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Public Health 8:14

    Article  Google Scholar 

  • Manivasagan P, Nam SY, Oh J (2016) Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles. Crit Rev Microbiol 42:1007–1019

    Article  CAS  Google Scholar 

  • Minimol M, Vidya SK, Saidutta MB (2020) Process engineering aspects in bioleaching of metals from electronic waste. In: Jerold M, Arockiasamy S, Sivasubramanian V (eds) Bioprocess engineering for bioremediation, valorization and management techniques. Springer, Cham, pp 27–44

    Chapter  Google Scholar 

  • Mishra A, Mishra SP, Arshi A, Agarwal A, Dwivedi SK (2020) Plant-microbe interactions for bioremediation and phytoremediation of environmental pollutants and agroecosystem development. In: Bharagava R, Saxena G (eds) Bioremediation of industrial waste for environmental safety: volume II, Biological agents and methods for industrial waste management. Springer, Singapore, pp 415–436

    Chapter  Google Scholar 

  • Mishra A (2021) Phytoremediation of heavy metal-contaminated soils: recent advances, challenges, and future prospects. In: Saxena G, Kumar V, Shah MP (eds) Bioremediation for environmental sustainability toxicity, mechanisms of contaminants degradation, detoxification, and challenges. Elsevier, New York, pp 29–45

    Google Scholar 

  • Misra CS, Appukuttan D, Kantamreddi VSS, Rao AS, Apte SK (2012) Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes. Bioengineered 3:44–48

    Article  Google Scholar 

  • Mohan SV, Sirisha K, Rao NC, Sarma PN, Reddy SJ (2004) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J Hazard Mater 116:39–48

    Article  CAS  Google Scholar 

  • Mohanrasu K, Premnath N, Prakash GS, Sudhakar M, Boobalan T, Arun A (2018) Exploring multi potential uses of marine bacteria; an integrated approach for PHB production, PAHs and polyethylene biodegradation. J Photochem Photobiol B Biol 185:55–65

    Article  CAS  Google Scholar 

  • Mohanrasu K, Rao RGR, Raja R, Arun A (2020) Bioremediation process by marine microorganisms. In: Kim SK (ed) Encyclopedia of marine biotechnology, vol 4. Wiley, Hoboken, pp 2211–2228

    Chapter  Google Scholar 

  • Mohapatra RK, Parhi PK, Patra JK, Panda CR, Thatoi HN (2017) Biodetoxification of toxic heavy metals by marine metal resistant bacteria–a novel approach for bioremediation of the polluted saline environment. In: Patra J, Vishnuprasad C, Das G (eds) Microbial biotechnology. Springer, Singapore, pp 343–376

    Chapter  Google Scholar 

  • Morcillo F, González-Muñoz MT, Reitz T, Romero-González ME, Arias JM, Merroun ML (2014) Biosorption and biomineralization of U (VI) by the marine bacterium Idiomarina loihiensis MAH1: effect of background electrolyte and pH. PLoS One 9:e91305

    Article  Google Scholar 

  • Morillo E, Madrid F, Lara-Moreno A, Villaverde J (2020) Soil bioremediation by cyclodextrins. A review Int J Pharm 591:119943

    Article  CAS  Google Scholar 

  • Naeem U, Qazi MA (2020) Leading edges in bioremediation technologies for removal of petroleum hydrocarbons. Environ Sci Pollut Res 27:27370–27382

    Article  CAS  Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012) Bioremediation of metals mediated by marine bacteria. In: Satyanarayana T, Johri B, Prakash A (eds) Microorganisms in environmental management. Springer, Dordrecht, pp 665–682

    Chapter  Google Scholar 

  • Natarajan G, Ting YP (2013) Two-step bioleaching and spent medium leaching of gold from electronic scrap material using Chromobacterium violaceum. Adv Mater Res 825:270–273

    Article  Google Scholar 

  • Nogales J, García JL, Díaz E (2017) Degradation of aromatic compounds in pseudomonas: a systems biology view. In: Rojo F (ed) Aerobic utilization of hydrocarbons, oils and lipids. Handbook of Hydrocarbon and Lipid Microbiology, Springer, Cham, pp 1–49

    Google Scholar 

  • Noman E, Al-Gheethi A, Mohamed RMSR, Talip BA (2019) Myco-remediation of xenobiotic organic compounds for a sustainable environment: a critical review. Top Curr Chem 377:17–41

    Article  Google Scholar 

  • Nwankwegu AS, Onwosi CO (2017) Bioremediation of gasoline contaminated agricultural soil by bioaugmentation. Environ Technol Innov 7:1–11

    Article  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1504

    Article  Google Scholar 

  • Okshevsky M, Gautier E, Farner JM, Schreiber L, Tufenkji N (2020) Biofilm formation by marine bacteria is impacted by concentration and surface functionalization of polystyrene nanoparticles in a species-specific manner. Environ Microbiol Rep 12:203–213

    Article  CAS  Google Scholar 

  • Olu-arotiowa OA, Ajani AO, Aremu MO, Agarry SE (2019) Bioremediation of atrazine herbicide contaminated soil using different bioremediation strategies. J Appl Sci Environ Manag 23:99–109

    CAS  Google Scholar 

  • Ossai IC, Ahmed A, Hassan A, Hamid FS (2020) Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov 17:100526

    Article  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64

    Article  CAS  Google Scholar 

  • Pal S, Kundu A, Banerjee TD, Mohapatra B, Roy A, Manna R, Kazy SK (2017) Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment. Genomics 109:374–382

    Article  CAS  Google Scholar 

  • Paliwal V, Puranik S, Purohit HJ (2012) Integrated perspective for effective bioremediation. Appl Biochem Biotechnol 166:903–924

    Article  CAS  Google Scholar 

  • Pandey P, Pathak H, Dave S (2018) Metabolic engineering and future prospects in bioremediation: a minireview. Int J Res Anal Rev 5:664–668

    Google Scholar 

  • Panwichian S, Kantachote D, Wittayaweerasak B, Mallavarapu M (2011) Removal of heavy metals by exopolymeric substances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds. Electron J Biotechnol 14:2

    Google Scholar 

  • Park BG, Kim M, Kim J, Yoo H, Kim BG (2017) Systems biology for understanding and engineering of heterotrophic oleaginous microorganisms. Biotechnol J 12:1600104

    Article  Google Scholar 

  • Partovinia A, Rasekh B (2018) Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments. Crit Rev Environ Sci Technol 48:1–38

    Article  CAS  Google Scholar 

  • Paul D, Pandey G, Jain RK (2005) Suicidal genetically engineered microorganisms for bioremediation: need and perspectives. BioEssays 27:563–573

    Article  CAS  Google Scholar 

  • Perpetuo EA, Souza CB, Nascimento CAO (2011) Engineering bacteria for bioremediation. In: Capri A (ed) Progress in molecular and environmental bioengineering–from analysis and modeling to technology applications. IntechOpen, London. https://doi.org/10.5772/19546

  • Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. In: Atlas RM, Philip JC (eds) Bioremediation: applied microbial solutions for real-world environmental cleanup. ASM Press, Washington, pp 139–236

    Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Op Biotechnol 11:262–270

    Article  CAS  Google Scholar 

  • Pimviriyakul P, Wongnate T, Tinikul R, Chaiyen P (2020) Microbial degradation of halogenated aromatics: mechanisms and enzymatic reactions. Microb Biotechnol 13:67–86

    Article  Google Scholar 

  • Poi G, Aburto-Medina A, Mok PC, Ball AS, Shahsavari E (2017) Large-scale bioaugmentation of soil contaminated with petroleum hydrocarbons using a mixed microbial consortium. Ecol Eng 102:64–71

    Article  Google Scholar 

  • Pradhan JK, Kumar S (2012) Metals bioleaching from electronic waste by Chromobacterium violaceum and pseudomonads sp. Waste Manag Res 30:1151–1159

    Article  Google Scholar 

  • Prakash V, Saxena S, Sharma A, Singh S, Singh SK (2015) Treatment of oil sludge contamination by composting. J Bioremed Biodegr 6:284

    Google Scholar 

  • Pratush A, Kumar A, Hu Z (2018) Adverse effect of heavy metals (as, Pb, hg, and Cr) on health and their bioremediation strategies: a review. Int Microbiol 21:97–106

    Article  CAS  Google Scholar 

  • Prince RC (1997) Bioremediation of marine oil spills. Trends Biotechnol 15:158–160

    Article  CAS  Google Scholar 

  • Priya A, Hait S (2017) Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ Sci Pollut Res 24:6989–7008

    Article  CAS  Google Scholar 

  • Quintella CM, Mata AM, Lima LC (2019) Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils. J Environ Manag 241:156–166

    Article  CAS  Google Scholar 

  • Raghul SS, Bhat SG, Chandrasekaran M, Francis V, Thachil ET (2014) Biodegradation of polyvinyl alcohol-low linear density polyethylene-blended plastic film by consortium of marine benthic vibrios. Int J Environ Sci Technol 11:1827–1834

    Article  CAS  Google Scholar 

  • Rahman Z, Singh VP (2020) Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environ Sci Pollut Res 27:27563–27581

    Article  CAS  Google Scholar 

  • Raj R, Dalei K, Chakraborty J, Das S (2016) Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interface Sci 462:166–175

    Article  CAS  Google Scholar 

  • Rajakaruna SS, Robinson TAW (2016) Application of recombinant DNA technology (genetically modified organisms) to the advancement of agriculture, medicine, bioremediation and biotechnology industries. J Appl Biotechnol Bioeng 1:78–80

    Google Scholar 

  • Rasoulnia P, Mousavi SM (2016) Maximization of organic acids production by aspergillus Niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments. Bioresour Technol 216:729–736

    Article  CAS  Google Scholar 

  • Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989

    Article  CAS  Google Scholar 

  • Raziyafathima M, Praseetha PK, Rimal Isaac RS (2016) Microbial degradation of plastic waste: a review. Chem Biol Sci 4:231–242

    CAS  Google Scholar 

  • Reddy C, Mathew Z (2002) Bioremediation potential of white rot fungi. In: Gadd GM (ed) Fungi in Bioremediation. Cambridge University Press, Cambridge, pp 52–78

    Google Scholar 

  • Redfern LK, Gardner CM, Hodzic E, Ferguson PL, Hsu-Kim H, Gunsch CK (2019) A new framework for approaching precision bioremediation of PAH contaminated soils. J Hazard Mater 378:120859

    Article  CAS  Google Scholar 

  • Ren X, Zeng G, Tang L, Wang J, Wang J, Deng Y, Liu Y, Peng B (2018) The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation. Waste Manag 72:138–149

    Article  CAS  Google Scholar 

  • Roager L, Sonnenschein EC (2019) Bacterial candidates for colonization and degradation of marine plastic debris. Environ Science Technol 53:11636–11643

    Article  CAS  Google Scholar 

  • Robinson NJ, Whitehall SK, Cavet JS (2001) Microbial metallothioneins. Adv Microb Physiol 44:183–213

    Article  CAS  Google Scholar 

  • Roh Y, Gao H, Vali H, Kennedy DW, Yang ZK, Gao W, Dohnalkova AC, Stapleton RD, Moon JW, Phelps TJ, Fredrickson JK, Zhou J (2006) Metal reduction and iron biomineralization by a psychrotolerant Fe (III)-reducing bacterium, Shewanella sp. strain PV-4. Appl Environ Microbiol 72:3236–3244

    Article  CAS  Google Scholar 

  • Ruiz ON, Alvarez D, Gonzalez-Ruiz G, Torres C (2011) Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol 11:82

    Article  CAS  Google Scholar 

  • Salunke BK, Sawant SS, Lee S-I, Kim BS (2015) Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99:5419–5427

    Article  CAS  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    Article  CAS  Google Scholar 

  • Sanscartier D, Zeeb B, Koch I, Reimer K (2009) Bioremediation of diesel contaminated soil by heated and humidified biopile system in cold climates. Cold Regions Sci Technol 55:167–173

    Article  Google Scholar 

  • Sarkar J, Roy A, Asr P, Kazy SK (2020) Accelerated bioremediation of petroleum refinery sludge through biostimulation and bioaugmentation of native microbiome. In: Shah MP, Rodriguez-Couto S, Sengör S (eds) Emerging Technologies in Environmental Bioremediation. Elsevier, New York, pp 23–66

    Chapter  Google Scholar 

  • Saum L, Jiménez MB, Crowley D (2018) Influence of biochar and compost on phytoremediation of oil-contaminated soil. Int J Phytoremediation 20:54–60

    Article  CAS  Google Scholar 

  • Saxena G, Bharagava RN (2016) Ram Chandra: advances in biodegradation and bioremediation of industrial waste. Clean Techn Environ Policy 18:979–980

    Article  Google Scholar 

  • Saxena G, Kishor R, Bharagava RN, Das P, Gupta PK, Kumar N (2021) Emerging green technologies for biological treatment of leather tannery chemicals and wastewater. In: Saxena G, Kumar V, Shah MP (eds) Bioremediation for environmental sustainability toxicity, mechanisms of contaminants degradation, detoxification, and challenges. Elsevier, New York, pp 435–460

    Google Scholar 

  • Sayavedra-Soto LA, Gvakharia B, Bottomley PJ, Arp DJ, Dolan ME (2010) Nitrification and degradation of halogenated hydrocarbons–a tenuous balance for ammonia-oxidizing bacteria. Appl Microbiol Biotechnology 86:435–444

    Article  CAS  Google Scholar 

  • Sekiguchi T, Ebisui A, Nomura K, Watanabe T, Enoki M, Kanehiro H (2009) Biodegradation of several fibers submerged in deep sea water and isolation of biodegradable plastic degrading bacteria from deep ocean water. Nippon Suisan Gakkaishi 75:1011–1018

    Article  CAS  Google Scholar 

  • Sekiguchi T, Saika A, Nomura K, Watanabe T, Watanabe T, Fujimoto Y, Enoki M, Sato T, Kato C, Kanehiro H (2011b) Biodegradation of aliphatic polyesters soaked in deep seawaters and isolation of poly (ɛ-caprolactone)-degrading bacteria. Polym Degrad Stability 96:1397–1403

    Article  CAS  Google Scholar 

  • Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C (2011a) Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Rep Res Dev 11:33–41

    Article  Google Scholar 

  • Senel UG, Hanay O (2017) Metal-microbe interactions and microbial bioremediation of toxic metals. In: Uslu GS, Hanay O (eds) Handbook of metal-microbe interactions and bioremediation. Taylor & Francis, New York, pp 99–110

    Google Scholar 

  • Sharma B, Dangi AK, Shukla P (2018a) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manag 210:10–22

    Article  CAS  Google Scholar 

  • Sharma R, Bhardwaj R, Gautam V, Bali S, Kaur R, Kaur P, Shama M, Kumar V, Sharma A, Sonia TAK, Vig AP, Ohri P (2018b) Phytoremediation in waste management: Hyperaccumulation diversity and techniques. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Plants under metal and metalloid stress. Springer, Singapore, pp 277–302

    Chapter  Google Scholar 

  • Shi K, Xue J, **ao X, Qiao Y, Wu Y, Gao Y (2019) Mechanism of degrading petroleum hydrocarbons by compound marine petroleum-degrading bacteria: surface adsorption, cell uptake, and biodegradation. Energy Fuel 33:11373–11379

    Article  CAS  Google Scholar 

  • Shukla KS, Mangwani N, Karley D, Rao TS (2017) Bacterial biofilms and genetic regulation for metal detoxification. In: Das S, Dash HR (eds) Handbook of metal-microbe interactions and bioremediation. Taylor & Francis, New York, pp 317–332

    Chapter  Google Scholar 

  • Silva-Castro GA, Uad I, Gónzalez-López J, Fandiño CG, Toledo FL, Calvo C (2012) Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using landfarming technology. Clean Techn Environ Policy 14:719–726

    Article  CAS  Google Scholar 

  • Silver S (1998) Genes for all metals–a bacterial view of the periodic table. J Ind Microbiol Biotechnol 20:1–12

    Article  CAS  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley-Interscience, New York, NY, USA

    Book  Google Scholar 

  • Singh J, Yadav P, Pal AK, Mishra V (2020) Water pollutants: origin and status. In: Pooja D, Kumar P, Singh P, Patil S (eds) Sensors in water pollutants monitoring: role of material. Springer, Singapore, pp 5–20

    Chapter  Google Scholar 

  • Stincone P, Brandelli A (2020) Marine bacteria as source of antimicrobial compounds. Crit Rev Biotechnol 40:306–319

    Article  CAS  Google Scholar 

  • Sudhakar M, Priyadarshini C, Doble M, Murthy PS, Venkatesan R (2007) Marine bacteria mediated degradation of nylon 66 and 6. Int Biodeter Biodegrad 60:144–151

    Article  CAS  Google Scholar 

  • Suresh K, Reddy GSN, Sengupta S, Shivaji S (2004) Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54:457–461

    Article  CAS  Google Scholar 

  • Swift G (1997) Non-medical biodegradable polymers: environmentally degradable polymers. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. Hardwood Academic, Amsterdam, pp 473–511

    Google Scholar 

  • Talukdar D, Jasrotia T, Sharma R, Jaglan S, Kumar R, Vats R, Kumar R, Mahnashi M, Umar A (2020) Evaluation of novel indigenous fungal consortium for enhanced bioremediation of heavy metals from contaminated sites. Environ Technol Innov 20:101050

    Article  CAS  Google Scholar 

  • Theerachat M, Guieysse D, Morel S, Remaud-Siméon M, Chulalaksananukul W (2018) Laccases from marine organisms and their applications in the biodegradation of toxic and environmental pollutants: a review. Appl Biochem Biotechnol 187:583–611

    Article  Google Scholar 

  • Timková I, Sedláková-Kaduková J, Pristaš P (2018) Biosorption and bioaccumulation abilities of actinomycetes/streptomycetes isolated from metal contaminated sites. Separations 5:54

    Article  Google Scholar 

  • Tipre DR, Purohit MS, Dave SR (2020) Marine bacteria–a treasure house of valuable products and functions. In: Niche M (ed) Applications in pharmaceutical sciences. Springer, Singapore, pp 415–436

    Chapter  Google Scholar 

  • Tiwari N, Santhiya D, Sharma JG (2020) Microbial remediation of micro-nano plastics: current knowledge and future trends. Environ Pollut 265:115044

    Article  CAS  Google Scholar 

  • Tyagi B, Kumar N (2021) Bioremediation: principles and applications in environmental management. In: Bioremediation for environmental sustainability toxicity, mechanisms of contaminants degradation, detoxification, and challenges. Elsevier, New York, pp 3–28

    Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  CAS  Google Scholar 

  • Urbanek AK, Rymowicz W, Mirończuk AM (2018) Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol 102:7669–7678

    Article  CAS  Google Scholar 

  • Urbanek AK, Rymowicz W, Strzelecki MC, Kociuba W, Franczak Ł, Mirończuk AM (2017) Isolation and characterization of Arctic microorganisms decomposing bioplastics. AMB Expr 7:148

    Article  Google Scholar 

  • Urionabarrenetxea E, Garcia-Velasco N, Anza M, Artetxe U, Lacalle R, Garbisu C, Becerril T, Soto M (2021) Application of in situ bioremediation strategies in soils amended with sewage sludges. Sci Total Environ 766:144099

    Article  CAS  Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286

    Article  CAS  Google Scholar 

  • Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B (2018) Introduction to environmental protection and management. In Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B (Ed) Bioremediation: applications for environmental protection and management. Springer Nature, pp. 1–6

    Chapter  Google Scholar 

  • Varjani S, Upasani VN, Pandey A (2020) Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Sci Total Environ 737:139766

    Article  CAS  Google Scholar 

  • Vásquez-Murrieta MS, Hernández-Hernández OJ, Cruz-Maya JA, Cancino-Díaz JC, Jan-Roblero J (2016) Approaches for removal of PAHs in soils: bioaugmentation, biostimulation and bioattenuation. In: Larramendy ML, Soloneski S (eds) Soil contamination–current consequences and further solutions. IntechOpen, London. https://doi.org/10.5772/64682

    Chapter  Google Scholar 

  • Verma S, Kuila A (2019) Bioremediation of heavy metals by microbial process. Environ Technol Innov 14:100369

    Article  Google Scholar 

  • Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vikas M, Dwarakish GS (2015) Coastal pollution: a review. Aquat Proc 4:381–388

    Article  Google Scholar 

  • Von Canstein H, Kelly S, Li Y, Wagner-Döbler I (2002) Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl Environ Microbiol 68:2829–2837

    Article  Google Scholar 

  • Wang L, Ji B, Hu Y, Liu R, Sun W (2017) A review on in situ phytoremediation of mine tailings. Chemosphere 184:594–600

    Article  CAS  Google Scholar 

  • Wang X, Müller WE (2009) Marine biominerals: perspectives and challenges for polymetallic nodules and crusts. Trends Biotechnol 27:375–383

    Article  Google Scholar 

  • Wei YT, Wu SC, Yang SW, Che CH, Lien HL, Huang DH (2012) Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. J Hazard Mater 211:373–380

    Article  Google Scholar 

  • Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240

    Article  CAS  Google Scholar 

  • Widada J, Nojiri H, Omori T (2002) Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Appl Microbiol Biotechnol 60:45–59

    Article  CAS  Google Scholar 

  • Williams J (2006) Bioremediation of contaminated soils: a comparison of in situ and ex situ techniques. Available at: http://home.eng.iastate.edu/Btge/ce421-521/jera.pdf

  • Wu G, Coulon F (2015) Protocol for biopile construction treating contaminated soils with petroleum hydrocarbons. In: McGenity T, Timmis K, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer Protocols Handbooks, Springer, Berlin, pp 181–194

    Chapter  Google Scholar 

  • Wu M, Dick WA, Li W, Wang X, Yang Q, Wang T, Xu L, Zhang M, Chen L (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum contaminated soil. Int Biodeter Biodegrad 107:158–164

    Article  CAS  Google Scholar 

  • Xu M, Fu X, Gao Y, Duan L, Xu C, Sun W, Li Y, Meng X, **ao X (2020) Characterization of a biosurfactant-producing bacteria isolated from marine environment: surface activity, chemical characterization and biodegradation. J Environ Chem Eng 8:104277

    Article  CAS  Google Scholar 

  • Xue J, Yu Y, Bai Y, Wang L, Wu Y (2015) Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: a review. Curr Microbiol 71:220–228

    Article  CAS  Google Scholar 

  • Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in the environment threats on ecosystem and bioremediation approaches. In: Das S, Dash HR (eds) Handbook of metal-microbe interactions and bioremediation. Taylor & Francis, New York, pp 127–142

    Google Scholar 

  • Yang J, Wang Q, Wang Q, Wu T (2008) Comparisons of one-step and two-step bioleaching for heavy metals removed from municipal solid waste incineration fly ash. Environ Eng Sci 25:783–789

    Article  Google Scholar 

  • Yuan J, Ma J, Sun Y, Zhou T, Zhao Y, Yu F (2020) Microbial degradation and other environmental aspects of microplastics/plastics. Sci Total Environ 715:136968

    Article  CAS  Google Scholar 

  • Zakaria NN, Convey P, Gomez-Fuentes C, Zulkharnain A, Sabri S, Shaharuddin NA, Ahmad SA (2021) Oil bioremediation in the marine environment of Antarctica: a review and bibliometric keyword cluster analysis. Microorganisms 9:419

    Article  CAS  Google Scholar 

  • Zhang H, Yuan X, **ong T, Wang H, Jiang L (2020) Bioremediation of co-contaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods. Chem Eng J 398:125657

    Article  CAS  Google Scholar 

  • Zulkifli SN, Rahim HA, Lau WJ (2018) Detection of contaminants in water supply: a review on state-of-the-art monitoring technologies and their applications. Sensors Actuators B Chem 255:2657–2689

    Article  CAS  Google Scholar 

  • Zylstra GJ, Wackett LP, Gibson DT (1989) Trichloroethylene degradation by Escherichia coli containing the cloned pseudomonas putida F1 toluene dioxygenase genes. Appl Environ Microbiol 55:3162–3166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of CNPq, FAPERGS, and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stincone, P., Andreazza, R., Demarco, C.F., Afonso, T.F., Brandelli, A. (2023). Marine Bacteria for Bioremediation. In: Encarnação, T., Canelas Pais, A. (eds) Marine Organisms: A Solution to Environmental Pollution?. Environmental Challenges and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-031-17226-7_8

Download citation

Publish with us

Policies and ethics

Navigation