Resonance Energy Transfer

  • Chapter
  • First Online:
Modern Optical Spectroscopy

Abstract

One way that an excited molecule can return to the ground state is to transfer the excitation energy to another molecule. This process, resonance energy transfer, plays a particularly important role in photosynthetic organisms. Extended arrays of pigment-protein complexes in the membranes of plants and photosynthetic bacteria absorb sunlight and transfer energy to the reaction centers, where the energy is trapped in electron-transfer reactions [1–3]. In other organisms, photolyases, which use the energy of blue light to repair ultraviolet damage in DNA, contain a pterin or deazaflavin that transfers energy efficiently to a flavin radical in the active site [4]. A similar antenna is found in cryptochromes, which appear to play a role in circadian rhythms [5]. Because the rate of resonance energy transfer depends on the distance between the energy donor and acceptor, the process also is used experimentally to probe intermolecular distances in biophysical systems [6]. Typical applications are to measure the distance between two proteins in a multienzyme complex or between ligands bound at two sites on a protein or to examine the rate at which components from two membrane vesicles mingle in a fused vesicle. An inquiry into the mechanism of resonance energy transfer also provides insight into the electronic coupling that underlies other time-dependent processes such as electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Amerongen, H., Valkunas, L., van Grondelle, R. (eds.): Photosynthetic Excitons. World Scientific, Singapore (2000)

    Google Scholar 

  2. Green, B.R., Parson, W.W.: Light-harvesting antennas in photosynthesis. In: Govindjee (ed.) Advances in Photosynthesis and Respiration, vol. 13. Kluwer Academic Publ, Dordrecht (2003)

    Google Scholar 

  3. Mirkovic, T., Ostroumov, E.E., Anna, J.M., van Grondelle, R., Govindjee, Scholes, G.D.: Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2016)

    Article  PubMed  Google Scholar 

  4. Sancar, A.: Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103, 2203–2237 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Saxena, V.P., Wang, H., Kavakli, H., Sancar, A., Zhong, D.: Ultrafast dynamics of resonance energy transfer in cryptochrome. J. Am. Chem. Soc. 127, 7984–7985 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. van der Meer, B.W., Coker, G.I., Chen, S.-Y.S.: Resonance Energy Transfer: Theory and Data. VCH, New York (1994)

    Google Scholar 

  7. Böttcher, C.J.F.: Theory of Electric Polarization, vol. 1, 2nd edn. Elsevier, Amsterdam (1973)

    Google Scholar 

  8. Krueger, B.P., Scholes, G.D., Jimenez, R., Fleming, G.R.: Electronic excitation transfer from carotenoid to bacteriochlorophyll in the purple bacterium Rhodopseudomonas acidophila. J. Phys. Chem. B. 102, 2284–2292 (1998)

    Article  CAS  Google Scholar 

  9. Krueger, B.P., Scholes, G.D., Fleming, G.R.: Calculations of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J. Phys. Chem. B. 102, 5378–5386 (1998)

    Article  CAS  Google Scholar 

  10. Förster, T.: Zwischenmoleckulare energiewanderung und fluoreszenz. Ann. d. Phys. 2, 55–75 (1948) (for an English translation with some corrections, see Biological Physics, Mielczarek, E.V., Greenbaum, E. and Knox, R.S., eds., New York: Am. Inst. Phys., pp. 148-160 (1993))

    Article  Google Scholar 

  11. Förster, T.: Delocalized excitation and excitation transfer. In: Sinanoglu, O. (ed.) Modern Quantum Chemistry, Pt. III, pp. 93–137. Academic Press, New York (1965)

    Google Scholar 

  12. Stryer, L.: Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978)

    Article  CAS  PubMed  Google Scholar 

  13. Selvin, P.R.: Fluorescence resonance energy transfer. Meth. Enzymol. 246, 300–334 (1995)

    Article  CAS  Google Scholar 

  14. Ward, R.J., Milligan, G.: Structural and biophysical characterization of G protein-coupled receptor ligand binding using resonance energy transfer and fluorescent labelling techniques. Biochim. Biophys. Acta. 1838, 3–14 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. Sridharan, R., Zuber, J., Connelly, S.M., Mathew, E., Dumont, M.E.: Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. Biochim. Biophys. Acta. 1838, 15–33 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. Stryer, L., Haugland, R.P.: Energy transfer: a spectroscopic ruler. Proc. Natl. Acad. Sci. U. S. A. 58, 719–726 (1967)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haugland, R.P., Yguerabide, J., Stryer, L.: Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap. Proc. Natl. Acad. Sci. U. S. A. 63, 23–30 (1969)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dale, R.E., Eisinger, J., Blumberg, W.E.: Orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys. J. 26, 161–194 (1979)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haas, E., Wilcheck, M., Katchalski-Katzir, E., Steinberg, I.Z.: Distribution of end-to-end distances of oligopeptides in solution as estimated by energy transfer. Proc. Natl. Acad. Sci. U. S. A. 72, 1807–1811 (1975)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parkhurst, K.M., Parkhurst, L.J.: Donor-acceptor distance distributions in a double-labeled fluorescent oligonucleotide both as a single strand and in duplexes. Biochemistry. 34, 293–300 (1995)

    Article  CAS  PubMed  Google Scholar 

  21. Klostermeier, D., Millar, D.P.: Time-resolved fluorescence resonance energy transfer: a versatile tool for the analysis of nucleic acids. Biopolymers. 61, 159–179 (2001)

    Article  PubMed  Google Scholar 

  22. Eis, P.S., Lakowicz, J.R.: Time-resolved energy transfer measurements of donor-acceptor distance distributions and intramolecular flexibility of a CCHH zinc finger peptide. Biochemistry. 32, 7981–7993 (1995)

    Article  Google Scholar 

  23. Möglich, A., Joder, K., Kiefhaber, T.: End-to-end distance distributions and intrachain diffusion constants in unfolded polypeptide chains indicate intramolecular hydrogen bond formation. Proc. Natl. Acad. Sci. U. S. A. 103, 12394–12399 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sun, H., Yin, D., Squire, T.C.: Calcium-dependent structural coupling between opposing globular domains of calmodulin involves the central helix. Biochemistry. 38, 7981–7993 (1999)

    Article  Google Scholar 

  25. Rhoades, E., Gussakovsky, E., Haran, G.: Watching proteins fold one molecule at a time. Proc. Natl. Acad. Sci. U. S. A. 100, 3197–3202 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rhoades, E., Cohen, M., Schuler, B., Haran, G.: Two-state folding observed in individual protein molecules. J. Am. Chem. Soc. 126, 14686–14687 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. Haas, E., Katchalski-Katzir, E., Steinberg, I.Z.: Brownian motion of ends of oligopeptide chains in solution as estimated by energy transfer between chain ends. Biopolymers. 17, 11–31 (1978)

    Article  CAS  Google Scholar 

  28. Beechem, J.M., Haas, E.: Simultaneous determination of intramolecular distance distributions and conformational dynamics by global analysis of energy transfer measurements. Biophys. J. 55, 1225–1236 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jang, S.J., Newton, M.D., Silbey, R.J.: Multichromophoric Förster resonance energy transfer. Phys. Rev. Lett. 92., Art. No. 218301 (2004)

    Google Scholar 

  30. Vöpel, T., Hengstenberg, C.S., Peulen, T.-O., Ajaj, Y., Seidel, C.A.M., Herrmann, C., Klare, J.P.: Triphosphate induced dimerization of human guanylate binding protein 1 involves association of the C-terminal helices: a joint double electron-electron resonance and FRET study. Biochemistry. 53, 4590–4600 (2014)

    Article  PubMed  Google Scholar 

  31. Nesmelov, Y.E., Agafonov, R.V., Negrashov, I.V., Blakely, S.E., Titus, M.A., Thomas, D.D.: Structural kinetics of myosin by transient time-resolved FRET. Proc. Natl. Acad. Sci. U. S. A. 108, 1891–1896 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kalinin, S., Valeri, A., Antonik, M., Felekyan, S., Seidel, C.A.M.: Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. J. Phys. Chem. B. 114, 7983–7995 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. Kalinen, S., Sisamakis, E., Magennis, S.W., Felekyan, S., Seidel, C.A.M.: On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits. J. Phys. Chem. B. 114, 6197–6206 (2010)

    Article  Google Scholar 

  34. Sindbert, S., Kalinen, S., Nguyen, H., Kienzler, A., Clima, L., Bannwarth, W., Appel, B., Müller, S., Seidel, C.A.M.: Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity. J. Am. Chem. Soc. 133, 2463–2480 (2011)

    Article  CAS  PubMed  Google Scholar 

  35. Felekyan, S., Sanabria, H., Kalinin, S., Kühnemuth, R., Seidel, C.A.: Analyzing Förster resonance energy transfer with fluctuation algorithms. Meth. Enzymol. 519, 39–85 (2013)

    Article  CAS  Google Scholar 

  36. Dimura, M., Peulen, T.-O., Hanke, C.A., Prakash, A., Gohlke, H., Seidel, C.A.M.: Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr. Opin. Struct. Biol. 40, 163–185 (2016)

    Article  CAS  PubMed  Google Scholar 

  37. Peulen, T.-O., Opanasyuk, O., Seidel, C.A.M.: Combining graphical and analytical methods with molecular simulations to analyze time-resolved FRET measurements of labeled macromolecules accurately. J. Phys. Chem. B. 121, 8211–8241 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanabria, H., Rodnin, D., Hemmen, K., Peulen, T.-O., et al.: Resolving dynamics and function of transient states in single enzyme molecules. Nat. Commun. 11, 1–15 (2020)

    Article  Google Scholar 

  39. Muller, E.G., Snydsman, B.E., Novik, I., Hailey, D.W., et al.: The organization of the core proteins of the yeast spindle pole body. Mol. Biol. Cell. 16, 3341–3352 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miyawaki, A., Llopis, J., Heim, R., McCaffrey, J.M., Adams, J.A., Ikura, M., Tsien, R.Y.: Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 388, 882–887 (1997)

    Article  CAS  PubMed  Google Scholar 

  41. Miyawaki, A., Griesbeck, O., Heim, R., Tsien, R.Y.: Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl. Acad. Sci. U. S. A. 96, 2135–2140 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guerrero, G., Rieff, D.F., Agarwal, G., Ball, R.W., Borst, A., Goodman, C.S., Isacoff, E.Y.: Heterogeneity in synaptic transmission along a Drosophila larval motor axon. Nature Neurosci. 8, 1188–1196 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. Xu, Y., Piston, D.W., Johnson, C.H.: A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. U. S. A. 96, 151–156 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Angers, S., Salahpour, A., Joly, E., Hilairet, S., Chelsky, D., Dennis, M., Bouvier, M.: Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. U. S. A. 97, 3684–3689 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Selvin, P.R., Rana, T.M., Hearst, J.E.: Luminescence resonance energy transfer. J. Am. Chem. Soc. 116, 6029–6030 (1994)

    Article  CAS  Google Scholar 

  46. Heyduk, T., Heyduk, E.: Luminescence energy transfer with lanthanide chelates: interpretation of sensitized acceptor decay amplitudes. Anal. Biochem. 289, 60–67 (2001)

    Article  CAS  PubMed  Google Scholar 

  47. Selvin, P.R.: Principles and biophysical applications of lanthanide-based probes. Ann. Rev. Biophys. Biomol. Struct. 31, 275–302 (2002)

    Article  CAS  Google Scholar 

  48. Reifenberger, J.G., Snyder, G.E., Baym, G., Selvin, P.R.: Emission polarization of europium and terbium chelates. J. Phys. Chem. B. 107, 12862–12873 (2003)

    Article  CAS  Google Scholar 

  49. Posson, D.J., Ge, P., Miller, C., Benzanilla, F., Selvin, P.R.: Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature. 436, 848–851 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ha, T.: Single-molecule fluorescence methods for the study of nucleic acids. Curr. Opin. Struct. Biol. 11, 287–292 (2001)

    Article  CAS  PubMed  Google Scholar 

  51. Joo, C., Balci, H., Ishitsuka, Y., Burnachai, C., Ha, T.: Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008)

    Article  CAS  PubMed  Google Scholar 

  52. Schuler, B., Eaton, W.A.: Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol. 18, 16–26 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ha, T., Kozlov, A.G., Lohman, T.M.: Single-molecule views of protein movement on single-stranded DNA. Annu. Rev. Biophys. 41, 295–319 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schuler, B., Soranno, A., Hofmann, H., Nettels, D.: Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu. Rev. Biophys. 45, 207–231 (2016)

    Article  CAS  PubMed  Google Scholar 

  55. Gambin, Y., Deniz, A.A.: Multicolor single-molecule FRET to explore protein folding and binding. Mol. BioSyst. 6, 1540–1547 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hohng, S., Lee, S., Lee, J., Jo, M.H.: Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque. Chem. Soc. Rev. 43, 1007–1013 (2014)

    Article  CAS  PubMed  Google Scholar 

  57. Yoo, J., Kim, J.Y., Chung, H.S.: Fast three-color single-molecule FRET using statistical inference. Nat. Commun. 11, 1–14 (2020)

    Article  Google Scholar 

  58. Talaga, D.S., Lau, W.L., Roder, H., Tang, J., Jia, Y., DeGrado, W.F., Hochstrasser, R.M.: Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. Proc. Natl. Acad. Sci. U. S. A. 97, 13021–13026 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schuler, B., Lipman, E.Å., Eaton, W.A.: Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature. 419, 743–747 (2002)

    Article  CAS  PubMed  Google Scholar 

  60. Kuzmenkina, E.V., Heyes, C.D., Nienhaus, G.U.: Single-molecule Förster resonance energy transfer study of protein dynamics under denaturing conditions. Proc. Natl. Acad. Sci. U. S. A. 102, 15471–15476 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang, F., Sato, S., Sharpe, T.D., Ying, L., Fersht, A.R.: Distinguishing between cooperative and unimodal downhill protein folding. Proc. Natl. Acad. Sci. U. S. A. 104, 123–127 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Merchant, K.A., Best, R.B., Louis, J.M., Gopich, I.V., Eaton, W.A.: Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc. Natl. Acad. Sci. U. S. A. 104, 1528–1533 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nettels, D., Gopich, I.V., Hoffmann, A., Schuler, B.: Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc. Natl. Acad. Sci. U. S. A. 104, 2655–2660 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kinoshita, M., Kamagata, K., Maeda, A., Goto, Y., Komatsuzaki, T., Takahashi, S.: Development of a technique for the investigation of folding dynamics of single proteins for extended time periods. Proc. Natl. Acad. Sci. U. S. A. 104, 10453–10458 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang, F., Ying, L., Fersht, A.R.: Direct observation of barrier-limited folding of BBL by single-molecule fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. U. S. A. 106, 16239–16244 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, L.-L., Kao, M.W.-P., Chen, H.-L., Lim, T.-S., Fann, W., Chen, R.P.-Y.: Observation of protein folding/unfolding dynamics of ubiquitin trapped in agarose gel by single-molecule FRET. Eur. Biophys. J. 41, 189–198 (2012)

    Article  CAS  PubMed  Google Scholar 

  67. Rieger, R., Nienhaus, G.U.: A combined single-molecule FRET and tryptophan fluorescence study of RNase H folding under acidic conditions. Chem. Phys. 396, 3–9 (2012)

    Article  CAS  Google Scholar 

  68. Schuler, B., Hofmann, H.: Single-molecule spectroscopy of protein folding dynamics - expanding scope and timescales. Curr. Opin. Struct. Biol. 23, 36–47 (2013)

    Article  CAS  PubMed  Google Scholar 

  69. Mashaghi, A., Kramer, G., Lamb, D.C., Mayer, M.P., Tans, S.J.: Chaperone action at the single-molecule level. Chem. Rev. 114, 660–676 (2014)

    Article  CAS  PubMed  Google Scholar 

  70. Brucale, M., Schuler, B., Samori, B.: Single-molecule studies of intrinsically disordered proteins. Chem. Rev. 114, 3281–3317 (2014)

    Article  CAS  PubMed  Google Scholar 

  71. Gopich, I.V., Szabo, A.: Single-molecule FRET with diffusion and conformational dynamics. J. Phys. Chem. B. 111, 12925–12932 (2007)

    Article  CAS  PubMed  Google Scholar 

  72. Gopich, I.V., Szabo, A.: Decoding the pattern of photon colors in single-molecule FRET. J. Phys. Chem. B. 113, 10965–10973 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chung, H.S., Gopich, I.V.: Fast single-molecule FRET spectroscopy: theory and experiment. Phys. Chem. Chem. Phys. 16, 18644–18657 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chung, H.S., Louis, J.M., Eaton, W.A.: Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories. Proc. Natl. Acad. Sci. U. S. A. 106, 11837–11844 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chung, H.S., McHale, K., Louis, J.M., Eaton, W.A.: Single-molecule fluorescence experiments determine protein folding transition path times. Science. 335, 981–984 (2012)

    Article  CAS  PubMed  Google Scholar 

  76. Chung, H.S., Cellmer, T., Louis, J.M., Eaton, W.A.: Measuring ultrafast protein folding rates from photon-by-photon analysis of single molecule fluorescence trajectories. Chem. Phys. 422, 229–237 (2013)

    Article  CAS  PubMed  Google Scholar 

  77. Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)

    Article  CAS  Google Scholar 

  78. Struve, W.S.: Theory of electronic energy transfer. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds.) Anoxygenic Photosynthetic Bacteria, pp. 297–313. Kluwer Academic Publ, Dordrecht (1995)

    Google Scholar 

  79. Robert, B., Cogdell, R.J., van Grondelle, R.: The light-harvesting system of purple bacteria. In: Green, B.R., Parson, W.W. (eds.) Light-Harvesting Antennas in Photosynthesis, pp. 169–194. Kluwer Academic Publishers, Dordrecht (2003)

    Chapter  Google Scholar 

  80. Tani, K., Nagashima, K.V.P., Kanno, R., Kawamura, S., et al.: A previously unrecognized membrane protein in the Rhodobacter sphaeroides LH1-RC photocomplex. Nat. Commun. 12, 6300/1-9 (2021)

    Article  Google Scholar 

  81. Qian, P., Swainsbury, D.J.K., Croll, T.I., Castro-Hartmann, P., Divitini, G., Sader, K., Hunter, C.N.: Cryo-EM structure of the Rhodobacter sphaeroides light-harvesting 2 complex at 2.1 Å. Biochemistry. 60, 3302–4414 (2021)

    Article  CAS  PubMed  Google Scholar 

  82. Yu, L.-J., Suga, M., Wang-Otomo, Z.-Y., Shen, J.-R.: Structure of photosynthetic LH1-RC supercomplex at 1.9 angstrom resolution. Nature. 556, 209–213 (2018)

    Article  CAS  PubMed  Google Scholar 

  83. Aargaard, J., Sistrom, W.R.: Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem. Photobiol. 15, 209–225 (1972)

    Article  Google Scholar 

  84. Niedzwiedzki, D.M., Gardiner, A.T., Cogdell, R.J.: Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities. Photosynth. Res. 137, 389–402 (2018)

    Article  CAS  PubMed  Google Scholar 

  85. Gardiner, A.T., Niedzwiedzki, D.M., Cogdell, R.J.: Adaptation of Rhodopseudomonas acidophila strain 7050 to growth at different light intensities: what are the benefits to changing the type of LH2? Faraday Discuss. 207, 471–489 (2018)

    Article  CAS  PubMed  Google Scholar 

  86. Malavath, T., Caspy, I., Netzer-El, S.Y., Klaiman, D., Nelson, N.: Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Biochim. Biophys. Acta. 1859, 645–654 (2018)

    Article  CAS  Google Scholar 

  87. Akhtar, P., Caspy, I., Nowakowski, P.J., Malavath, T., Nelson, N., Tan, H.-S., Lambrev, P.H.: Two-dimensional electronic spectroscopy of a minimal photosystem I complex reveals the rate of primary charge separation. J. Am. Chem. Soc. 143, 14601–14612 (2021)

    Article  CAS  PubMed  Google Scholar 

  88. Iwata, S., Barber, J.: Structure of photosystem II and molecular architecture of the oxygen-evolving centre. Curr. Opin. Struct. Biol. 14, 447–453 (2004)

    Article  CAS  PubMed  Google Scholar 

  89. Umena, Y., Kawakami, K., Shen, J.-R., Kamiya, N.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 473, 55–60 (2011)

    Article  CAS  PubMed  Google Scholar 

  90. Ago, H., Adachi, H., Umena, Y., Tashiro, T., et al.: Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga. J. Biol. Chem. 291, 5676–5687 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Young, A.J., Phillip, D., Ruban, A.V., Horton, P., Frank, H.A.: The xanthophyll cycle and carotenoid-mediated dissipation of excess excitation energy in photosynthesis. Pure Appl. Chem. 69, 2125–2130 (1997)

    Article  CAS  Google Scholar 

  92. Frank, H.A., Cua, A., Chynwat, V., Young, A., Gosztola, D., Wasielewski, M.R.: Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth. Res. 41, 389–395 (1994)

    Article  CAS  PubMed  Google Scholar 

  93. Polivka, T., Herek, J.L., Zigmantas, D., Akerlund, H.E., Sundström, V.: Direct observation of the (forbidden) S1 state in carotenoids. Proc. Natl. Acad. Sci. U. S. A. 96, 4914–4917 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Martinsson, P., Oksanen, J.A., Hilgendorff, M., Hynninen, P.H., Sundström, V., Akesson, E.: Dynamics of ground and excited state chlorophyll a molecules in pyridine solution probed by femtosecond transient absorption spectroscopy. Chem. Phys. Lett. 309, 386–394 (1999)

    Article  CAS  Google Scholar 

  95. Frank, H.A., Bautista, J.A., Josue, J.S., Young, A.J.: Mechanism of nonphotochemical quenching in green plants: energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry. 39, 2831–2837 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parson, W.W., Burda, C. (2023). Resonance Energy Transfer. In: Modern Optical Spectroscopy. Springer, Cham. https://doi.org/10.1007/978-3-031-17222-9_7

Download citation

Publish with us

Policies and ethics

Navigation