The Highs and Lows of the Reef Phenomenon

  • Chapter
  • First Online:
Corals and Reefs

Abstract

The expected causes of biological crises throughout the Phanerozoic are thought to have resulted mainly from huge volcanic activity generating thermogenic gases (carbon dioxide, methane), metal poisoning and anoxia or from fall of extra-terrestrial bolides. Among more than twenty major crises that have impacted global biodiversity, the most dramatic, the so-called the Big Five occurred at the Ordovician, at the end of the Devonian, at the Permian–Triassic transition, at the Triassic–Jurassic transition, and at the end of the Cretaceous. Most crises are interpreted as caused by anoxia or ocean acidification. Early corals disappeared at the end of Permian, during the most severe mass extinction. Archaic scleractinian species probably survived as naked, soft-body anemones. Although not representative as reef builders until the Jurassic, scleractinians usually participated in reef building. Replaced by bivalve rudists during the Cretaceous as dominant builders, scleractinians survived from the end of the Cretaceous, mainly through asymbiotic forms, while rudists were totally terminated. Several scleractinian-reef gaps occurred in the early Paleocene and the early Eocene. Some coral species experienced significant extinctions in the Caribbean province during the Oligocene–Miocene transition and at the end of the Pliocene while continuing to live in the Indo-Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algeo TJ, Marenco PJ, Saltzman MR (2016) Co-evolution of oceans, climate and the biosphere during the ‘Ordovician Revolution’: a review. Palaeogeogr Palaeoclimatol Palaeoecol 458:1–11

    Google Scholar 

  • Alroy J (2010) Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:1211–1235

    Google Scholar 

  • Baceta JI, Pujalte V, Bernaola G (2005) Paleocene coralgal reefs of the western Pyrenean basin, northern Spain: new evidence supporting an earliest Paleogene recovery of reefal ecosystem. Palaeogeogr Palaeoclimatol Palaeoecol 224:117–143

    Google Scholar 

  • Bambach RK, Knoll AH, Wang SC (2004) Origination, extinction and mass depletions of marine diversity. Paleobiology 30:522–542

    Google Scholar 

  • Bambach RR (2006) Phanerozoic biodiversity: mass extinctions. Annu Rev Earth Planet Sci 34:127–155

    CAS  Google Scholar 

  • Beauvais L (1992) Palaeobiogeography of the Early Cretaceous corals. Palaeogeogr Palaeoclimatol Palaeoecol 92:233–247

    Google Scholar 

  • Becker L, Poreda RJ, Basu AR, Pope KO, Harrison TM, Nicholson C, Iasky R (2004) Bedout: a possible end-Permian impact crater offshore of northwestern Australia. Science 304:1469–1479

    CAS  PubMed  Google Scholar 

  • Black BA, Lamarque J-F, Shields CA, Elkins-Tanton LT, Kiehl JT (2014) Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42:67–70

    CAS  Google Scholar 

  • Bond DPG, Wignall PB (2010) Pyrite framboid study of marine Permian–Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. Geol Soc Am Bull 122:1265–1279

    CAS  Google Scholar 

  • Bond DPG, Zaton M, Wignall PB, Marynowski L (2013) Evidence for shallow-water ‘Upper Kellwasser’ anoxia in the Frasnian-Fammenian reefs of Alberta, Canada. Lethaia 46:355–368

    Google Scholar 

  • Bond DPG, Grasby SE (2017) On the causes of mass extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 478:3–29

    Google Scholar 

  • Bosellini FR, Russo A, Vescogni A (2001) Messinian reef-building assemblages of the Salento Peninsula (southern Italy): palaeobathymetric and palaeoclimatic significance. Palaeogeogr Palaeoclimatol Palaeoecol 175:7–26

    Google Scholar 

  • Brenchley PJ, Marshall JD, Underwood CJ (2001) Do all mass extinction represent an ecological crisis? Evidence from the late Ordovician. Geol J 36:329–340

    Google Scholar 

  • Cai Y-F, Zhang H, Cao C-Q, Zheng Q-F, ** C-F, Shen S-Z (2021) Wildfires and deforestation during the Permian–Triassic transition in the southern Junggar Basin, Northwest China. Earth Sci Rev 218:103670

    CAS  Google Scholar 

  • Calner M (2005) Silurian carbonate platforms and extinction events – ecosystem changes exemplified from Gotland, Sweden. Facies 51:584–591

    Google Scholar 

  • Clapham ME (2016) Organism activity levels predict marine invertebrate survival during ancient global change extinctions. Glob Chang Biol 23:1477–1485

    PubMed  Google Scholar 

  • Clarkson MO, Kasemann SA, Wood RA, Lenton TM, Daines SJ, Richoz S, Ohnemuller F, Meixner A, Poulton SW, Tipper ET (2015) Ocean acidification and the Permo-Triassic mass extinction. Science 348:229–232

    CAS  PubMed  Google Scholar 

  • Copper P (2002) Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Society of Economic Paleontologists and Mineralogists, Tulsa, USA, pp 181–238

    Google Scholar 

  • Copper P (2011) 100 millions years of reef prosperity and collapse: Ordovician to Devonian interval. In: Stanley JD (ed) Coral and reef crises, collapse and change, Paleontol Soc Papers, vol 17, pp 15–32

    Google Scholar 

  • Copper P, ** J (2012) Early Silurian (Aeronian) East Point coral patches of Anticosti Island, Eastern Canada: first reef recovery from the Ordovician/Silurian mass extinction in eastern Laurentia. Geosciences 2:64–89

    Google Scholar 

  • Courtillot VE, Renne PR (2003) On the ages of flood basalte events. Compt Rendus Geosci 335:113–140

    Google Scholar 

  • Covey C, Thompson SL, Weissman PR, MacCracken MC (1994) Global climatic effects of atmospheric dust from an asteroid or comet impact on Earth. Glob Planet Chang 9:263–273

    Google Scholar 

  • Coxall HK, Pearson PN (2007) The Eocene–Oligocene transition. In: Williams M, Haywood AM, Gregory FJ, Schmidt DN (eds) Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies. The Micropalaeontological Society, Special Publications. The Geological Society, London, pp 351–387

    Google Scholar 

  • Dal Corso J, Gianolla P, Newton RJ, Franceschi M, Roghi G, Caggiati M, Raucsik B, Budai T, Haas J, Preto N (2015) Carbon isotope records reveal synchronicity between carbon cycle perturbation and the ‘Carnian Pluvial Event’ in the Tethys realm (Late Triassic). Glob Planet Chang 127:79–90

    Google Scholar 

  • DeSantis MK, Brett CE (2011) Late Eifelian (Middle Devonian) biocrises: timing and signature of the pre-Kačák Bakoven and Stony Hollow events in the eastern North America. Palaeogeogr Palaeoclimatol Palaeoecol 304:113–135

    Google Scholar 

  • Dickens GR (2009) Early Cenozoic hyperthermals: the sedimentary record of rapid global warming and massive carbon input. Theatr Rec 34:27–31

    Google Scholar 

  • Edinger EN, Risk MJ (1994) Oligocene–Miocene extinction and geographic restriction of Caribbean corals: roles of turbidity, temperature, and nutrients. Palaios 9:576–598

    Google Scholar 

  • Engoren M (2004) Vertebrate extinction across Permian-Triassic boundary in Karoo Basin, South Africa: Discussion. Geol Soc Am Bull 116:1294

    Google Scholar 

  • Ernst RE, Youbi N (2017) How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr Palaeoclimatol Palaeoecol 478:30–52

    Google Scholar 

  • Erwin DH (2001) Lessons from the past: biotic recoveries from mass extinctions. Proc Natl Acad Sci U S A 98:5399–5403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flügel E, Kiessling W (2002) Patterns of Phanerozoic reef crisis. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Society of Economic Paleontologists and Mineralogists, Tulsa, USA, pp 691–733

    Google Scholar 

  • Foote M (2014) Environmental controls on geographic range size in marine animal genera. Paleobiology 40:440–458

    Google Scholar 

  • Gargani J, Rigollet C (2007) Mediterranean sea level variations during the Messinian Salinity Crisis. Geophys Res Lett 34:L10405

    Google Scholar 

  • Gharaie MHM, Matsumoto R, Racki G, Kakuwa Y (2007) Chemostratigraphy of Frasnian–Fammenian transition: possibility of methane hydrate dissociation leading to mass extinction. In: Monechi S, Coccioni R, Rampino M (eds) Large ecosystem perturbations: causes and consequences. Geological Society of America Special Paper 424, pp 109–125

    Google Scholar 

  • Götz S, Loser H, Schimd DU (2005) Reef development on a deepening platform: two Early Cretaceous coralgal patch reefs (Catí, Llàcova Formation, eastern Spain) compared. Cretac Res 26:864–881

    Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz M, Ogg G (2012) The geological time scale. Elsevier, Amsterdam, p 1176

    Google Scholar 

  • Grasby SE, Beauchamp B, Bond DPG, Wignall P, Talavera C, Galloway JM, Piepjohn K, Reinhardt L, Blomeier D (2015) Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. Geol Soc Am Bull 127:1331–1347

    CAS  Google Scholar 

  • Grasby SE, Sanei H, Beauchamp B (2011) Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat Geosci 4:104–107

    CAS  Google Scholar 

  • Harper DAT, Hammarlund EU, Rasmussen CMO (2014) End-Ordovician extinctions: a coincidence of causes. Gondwana Res 25:1294–1307

    Google Scholar 

  • Hay WW, Migdisov A, Balukhovsky AN, Wold CN, Flögel S, Sölding E (2006) Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate, ocean circulation, and life. Palaeogeogr Palaeoclimatol Palaeoecol 240:3–46

    Google Scholar 

  • Heydari E, Arzani N, Safaei M, Hassanzadeh J (2013) Ocean’s response to a changing climate: clues from variations in carbonate mineralogy across the Permian–Triassic boundary of the Shareza section, Iran. Glob Planet Chang 105:79–90

    Google Scholar 

  • Huang Y, Chen Z-Q, Wignall PB, Grasby SE, Zhao L, Wang X, Kaiho K (2019) Biotic responses to volatile volcanism and environmental stresses over the Guadalupian-Lo**ian (Permian) transition. Geology 47:175–178

    CAS  Google Scholar 

  • Jackson JBC, Johnson KG (2001) Life in the last few million years. Paleobiology 26:221–235

    Google Scholar 

  • Kaiho K, Koga S (2013) Impacts of a massive release of methane and hydrogen sulfide on oxygen and ozone during the late Permian mass extinction. Glob Planet Chang 107:91–101

    Google Scholar 

  • Kennett JP, Cannariato KG, Hendy IL, Behl RJ (2000) Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science 288:128–133

    CAS  PubMed  Google Scholar 

  • Kiessling W (2002) Secular variations in the Phanerozoic reef ecosystems. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Society of Economic Paleontologists and Mineralogists, Tulsa, USA, pp 625–690

    Google Scholar 

  • Kiessling W (2008) Sampling-standardized expansion and collapse of reef building in the Phanerozoic. Fossil Rec 11:7–18

    Google Scholar 

  • Kiessling W, Baron-Szabo RC (2004) Extinction and recovery patterns of scleractinian corals at the Cretaceous–Tertiary boundary. Palaeogeogr Palaeoclimatol Palaeoecol 214:195–223

    Google Scholar 

  • Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW (2007) Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett 256:295–313

    CAS  Google Scholar 

  • Kiessling W, Simpson C (2011) On the potential for ocean acidification to be a general cause of ancient reef crises. Glob Chang Biol 17:56–67

    Google Scholar 

  • Lathuilière B, Marchal D (2009) Extinction, survival and recovery of corals from the Triassic to middle Jurassic time. Terra Nova 21:57–66

    Google Scholar 

  • Li Y, Kershaw S (2003) Reef reconstruction after extinction events of the latest Ordovician in the Yangtze platform, south China. Facies 48:269–284

    Google Scholar 

  • Liu Z, Pagani M, Zinniker D, Deconto R, Huber M, Brinkhuis H, Shah SR, Leckie RM, Pearson A (2009) Global cooling during the Eocene–Oligocene climate transition. Science 323:1187–1190

    CAS  PubMed  Google Scholar 

  • Malkowski K, Racki G (2009) A global biogeochemical perturbation across the Silurian-Devonian boundary: ocean–continent–biosphere feedbacks. Palaeogeogr Palaeoclimatol Palaeoecol 276:244–254

    Google Scholar 

  • Martindale RC, Berelson WM, Corsetti FA, Bottjer DJ, West AJ (2012) Constraining carbonate chemistry at a potential ocean acidification event (the Triassic–Jurassic boundary) using the presence of corals and coral reefs in the fossil record. Palaeogeogr Palaeoclimatol Palaeoecol 350–352:114–123

    Google Scholar 

  • Martindale RC, Foster W, Velledits F (2019) The survival, recovery and diversification of metazoan reef ecosystems following the end-Permian extinction event. Palaeogeogr Palaeoclimatol Palaeoecol 513:100–115

    Google Scholar 

  • Martin-Garin B, Lathuilière B, Geister J, Ramseyer K (2010) Oxygen isotopes and climatic control of Oxfordian coral reefs (Jurassic, Tethys). Palaios 25:721–729

    Google Scholar 

  • Martin-Garin B, Lathuilière B, Geister J (2012) The shifting biogeography of reef corals during the Oxfordian (Late Jurassic). A climatic control? Palaeogeogr Palaeoclimatol Palaeoecol 365–366:136–153

    Google Scholar 

  • McGhee GR (1996) The Late Devonian mass extinction. Columbia Univ. Press, New-York, 378 p

    Google Scholar 

  • McGhee GR, Clapham ME, Sheehan PM, Bottjer DJ, Droser ML (2013) A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeogr Palaeoclimatol Palaeoecol 370:260–270

    Google Scholar 

  • Meyer KM, Yu M, Jost AB, Kelley BM, Payne JL (2011) δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth Planet Sci Lett 302:378–384

    CAS  Google Scholar 

  • Newell ND (1967) Revolutions in the history of life. Geol Soc Am Bull, Special Paper 89:63–92

    Google Scholar 

  • O’Dea A, Jackson JBC, Fortunato H, Smith JT, D’Croz L, Johnson KG, Todd JA (2007) Environmental change preceded Caribbean extinction by 2 million years. Proc Natl Acad Sci U S A 104:5501–5506

    PubMed  PubMed Central  Google Scholar 

  • Ohno S, Kadono T, Kurosawa K, Hamura T, Sakaiya T, Shigemori K, Matsui T (2014) Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification. Nat Geosci 7:279–282

    CAS  Google Scholar 

  • Pauley G (1997) Diversity and distribution of reef organism. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New-York, USA, pp 298–353

    Google Scholar 

  • Payne JL, Kump LR (2007) Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet Sci Lett 256:264–277

    CAS  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    CAS  PubMed  Google Scholar 

  • Pearson PN, Foster GL, Wade BS (2009) Atmospheric carbone dioxide through the Eocene–Oligocene climate transition. Nature 461:1110–1113

    CAS  PubMed  Google Scholar 

  • Penman DE, Hönisch B, Zeebe RE, Thomas E, Zachos JC (2014) Rapid and sustained surface ocean acidification during the Paleocene–Eocene Thermal Maximum. Paleoceanography 29:357–369

    Google Scholar 

  • Percival LME, Ruhl M, Hesselbo SP, Jenkyns HC, Mather TA, Whiteside JH (2017) Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proc Natl Acad Sci U S A 114:7929–7934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen SV, Dutton A, Lohmann KC (2016) End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change. Nat Commun 7:12079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piran T, Jimenez R (2014) Possible role of gamma ray bursts on life extinction in the Universe. Phys Rev Lett 113:231102

    PubMed  Google Scholar 

  • Polozov AG, Svensen HH, Planke S, Grishina SN, Fristad KE, Jerram DA (2016) The basal pipes of the Tunguska Basin (Siberia, Russia): high temperature processes and volatile degassing into the end-Permian atmosphere. Palaeogeogr Palaeoclimatol Palaeoecol 441:51–64

    Google Scholar 

  • Pörtner HO (2002) Climatic variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761

    Google Scholar 

  • Pörtner HO, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. J Geophys Res 110:C09S10

    Google Scholar 

  • Pruss SB, Bottjer DJ (2005) The reorganization of reef communities following the end-Permian mass extinction. Comptes Rendus Paleovol 4:553–568

    Google Scholar 

  • Renne PR, Deino AL, Hilgen FG, Kuiper KF, Mark DF, Mitchell WF, Morgan LE, Mundil R, Smit J (2013) Time scales of critical events around the Cretaceous–Paleogene boundary. Science 339:684–687

    CAS  PubMed  Google Scholar 

  • Richards MA, Alvarez W, Self S, Karlstrom L, Renne PR, Manga M, Sprain CJ, Smit J, Vanderkluysen L, Gibson SA (2015) Triggering of the largest Deccan eruptions by the Chicxulub impact. Geol Soc Am Bull 127:1507–1520

    Google Scholar 

  • Riding R, Liang L (2005) Seawater chemistry control of marine limestone accumulation over the past 550 million years. Rev Esp Micropaleontol 37:1–11

    Google Scholar 

  • Sager WW, Zhang J, Korenaga J, Sano T, Koppers AP, Widdowson M, Mahoney JJ (2013) An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean. Nat Geosci 6:976–981

    CAS  Google Scholar 

  • Saint Martin J-P, Cornée JJ, Muller J (1995) La disparition des récifs coralliens en Méditerranée au Miocène supérieur : un événement écologique majeur. Actes du Colloque Okeanos:70–74

    Google Scholar 

  • Saint Martin J-P, Müller P, Moissette P, Dulai A (2000) Coral microbialite environment in a Middle Miocene reef of Hungary. Palaeogeogr Palaeoclimatol Palaeoecol 160:179–191

    Google Scholar 

  • Saltzman MR, Ripperdan RL, Brasier MD, Lohmann KC, Robinson RA, Chang WT, Peng S, Ergaliev EK, Runnegar B (2000) A global carbone isotope excursion (SPICE) during the late Cambrian: relation to trilobite extinctions, organic matter burial and sea level. Palaeogeogr Palaeoclimatol Palaeoecol 162:211–223

    Google Scholar 

  • Sandoval J, Henriques MH, Chandler RB, Ureta S (2012) Latest Toarcian-earliest Bajocian (Jurassic) Grammoceratinae (Hildoceratidae, Ammonitina) of the western Tethys; their palaeogeographic and phylogenetic significance. Geobios 45:109–119

    CAS  Google Scholar 

  • Sanei H, Grasby SE, Beauchamp B (2012) Latest Permian mercury anomalies. Geology 40:63–66

    CAS  Google Scholar 

  • Scheibner C, Speijer RP (2008) Decline of coral reefs during late Paleocene to early Eocene global warming. eEarth 3:19–26

    CAS  Google Scholar 

  • Schmidt A, Skeffington RA, Thordarson T, Selt S, Forster PM, Rap A, Ridgell A, Fowler D, Wilson M, Mann GW, Wignall PB (2015) Selective environmental stress from sulfur emitted by continental flood basalt eruptions. Nat Geosci 9:77–82

    Google Scholar 

  • Scott RW (1988) Evolution of late Jurassic and early Cretaceous reef biota. Palaios 3:184–193

    Google Scholar 

  • Scott RW (1995) Global environmental controls on Cretaceous reefal ecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 119:187–199

    Google Scholar 

  • Sepkoski J (2002) A Compendium of fossil marine animal genera. In: Jablonski D, Foote M (eds) Bulletins of the American Paleontological Society, vol 363, pp 1–560

    Google Scholar 

  • Sheenan PM, Harris MT (2004) Microbialite resurgence after the late Ordovician extinction. Nature 430:75–78

    Google Scholar 

  • Shen S-Z, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao C-Q, Rothman DH, Henderson CM, Ramezani J, Zhang H, Shen Y-N, Wang X-D, Wang W, Mu L, Li W-Z, Tang Y-G, Lui X-L, Lui L-J, Zeng Y, Jiang Y-F, ** Y-G (2011) Calibrating the end-Permian extinction. Science 334:1367–1372

    CAS  PubMed  Google Scholar 

  • Shen J, Chen J, Algeo TJ, Yuan S, Feng Q, Yu J, Zhou L, O’Connell B, Planavsky NJ (2019) Evidence for a prolonged Permian-Triassic extinction interval from global marine mercury records. Nat Commun 10:1563

    PubMed  PubMed Central  Google Scholar 

  • Shepherd HM (2013) Nearing the end: reef building corals and bivalves in the Late Triassic and comparing corals and bivalves before and after the end-Triassic mass extinction using a taxonomic database. Theses, Dissertations, Professional Papers, University of Montana, Paper 1403, 88 pp

    Google Scholar 

  • Sluijs A, Bowen GJ, Brinkhuis H, Lourens LJ, Thomas E (2007) The Palaeocene–Eocene thermal maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of global change. In: Williams M et al (eds) Deep time perspectives on climate change: marrying the signal from computer models and biological proxies. The Micropalaeontological Society, Special Publications. The Geological Society, London, pp 267–293

    Google Scholar 

  • Sobolev SV, Sobolev AV, Kuzmin DV, Krivolutskaya NA, Petrunin AG, Arndt NT, Radko VA, Vasiliev YR (2011) Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477:312–316

    CAS  PubMed  Google Scholar 

  • Smolarek J, Trela W, Bond PDG, Marynowski L (2016) Lower Wenlock black shales in the northern Holy Cross Mountains, Poland: sedimentary and geochemical controls on the Ireviken Event in a deep marine setting. Geol Mag 154:247–264

    Google Scholar 

  • Stanley GD Jr (2003) The evolution of modern corals and their early history. Earth Sci Rev 60:195–225

    Google Scholar 

  • Stanley GD Jr (2015) Ocean acidification, the Permian mass extinction and the Naked Coral Effect. STRATI 2015. Institut für Erdwissenschaften, Karl-Franzens Universität Graz, Abstracts, Band 21

    Google Scholar 

  • Stanley GD Jr, Swart PK (1995) Evolution of the coral-zooxanthellate symbiosis during the Triassic: a geochemical approach. Paleobiology 21:179–199

    Google Scholar 

  • Stanley GD Jr, van de Schootbrugge B (2009) The evolution of the coral-algal symbiosis. In: van Oppen MHJ, Lough JM (eds) Coral Bleaching: patterns, processes, causes and consequences. Springer, Berlin, pp 7–19

    Google Scholar 

  • Stanley GD Jr, Sheperd HME, Robinson AJ (2018) Paleoecological response of corals to the end-Triassic mass extinction: an integrational analysis. J Earth Sci 29:879–885

    CAS  Google Scholar 

  • Stanley SM (2016) Estimates of the magnitudes of the major marine mass extinctions in Earth history. Proc Natl Acad Sci U S A 113:E6325–E6333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strona G, Bradshaw CJA (2022) Coextinctions dominate future vertebrate losses from climate and land use change. Sci Adv 8:eabn4345

    PubMed  PubMed Central  Google Scholar 

  • Sun YD, Joachimsky MM, Wignall PB, Yan C-B, Chen Y-L, Jiang H-S, Wang L-N, Lai X-L (2012) Lethally hot temperatures during the early Triassic greenhouse. Science 338:366–370

    CAS  PubMed  Google Scholar 

  • Svensen H, Planke S, Chevallier L, Malthe-Sorensen A, Corfu F, Jamtveit B (2007) Hydrothermal venting of greenhouse gases triggering early Jurassic global warming. Earth Planet Sci Lett 256:554–566

    CAS  Google Scholar 

  • Tennant JP, Mannion PD, Upchurch P, Sutton MD, Price GD (2017) The Late Jurassic-Early Cretaceous transition: evidence for protracted faunal and ecological turnover. Biol Rev 92:776–814

    PubMed  Google Scholar 

  • Vasseur R, Lathuilière B, Lazăr I, Martindale RC, Bodin S, Durlet C (2021) Major coral extinctions during the early Toarcian global warming event. Glob Planet Chang 207:103647

    Google Scholar 

  • Veron JEN, Hoegh-Guldberg O, Lenton TM, Lough JM, Obura DO, Pearce-Kelly P, Sheppard CRC, Spalding M, Stafford-Smith MG, Rogers AD (2009) The coral reef crisis: the critical importance of < 350 ppm CO2. Mar Pollut Bull 58:1428–1436

    CAS  PubMed  Google Scholar 

  • Wang Y, Sadler PM, Shen SZ, Erwin DH, Zhang Y-C, Wang X-D, Wang W, Crowley JL, Henderson CM (2014) Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology 40:113–129

    Google Scholar 

  • Ward PD (2008) Under a green sky: global warming, the mass extinction of the past, and what they can tell us about our future. Smithsonian Books, Harper Collins, 256 pp

    Google Scholar 

  • Weissert H, Erba E (2004) Volcanism, CO2 and palaeoclimate: a Late Jurassic–Early Cretaceous carbon and oxygen isotope record. J Geol Soc 161:695–702

    CAS  Google Scholar 

  • Wignall PB, Morante R, Newton R (1998) The Permo-Triassic transition in Spitsbergen: δ13Corg chemostratigraphy, Fe and S geochemistry, facies, fauna and trace fossils. Geol Mag 133:47–62

    Google Scholar 

  • Wood RA (1999) Reef evolution. Oxford Univ Press, Oxford, 426 p

    Google Scholar 

  • Yao L, Aretz M, Chen J, Webb GE, Wang X (2016) Global microbial carbonate proliferation after the end-Devonian mass extinction: mainly controlled by demise of skeletal bioconstructors. Sci Rep 6:39694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    CAS  PubMed  Google Scholar 

  • Zachos JC, Röhl U, Schellenberg SA, Sluijs A, Hoddell DA, Kelly DC, Thomas E, Nicolo M, Raffi I, Lourens LJ, Mccarren H, Kroon D (2009) Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308:1611–1615

    Google Scholar 

  • Zamagni J, Mutti M, Kosir A (2012) The evolution of mid Paleocene–early Eocene coral communities: how to survive during rapid global warming. Palaeogeogr Palaeoclimatol Palaeoecol 317:48–65

    Google Scholar 

  • Zatoń M, Niedźwiedzki G, Rakociński M, Bloom H, Kear BP (2018) Earliest Triassic metazoan bioconstructions from East Greenland reveal a pioneering benthic community in the immediate aftermath of the end-Permian mass extinction. Glob Planet Chang 107:87–98

    Google Scholar 

  • Zhuravlev AY, Wood RA (1996) Anoxia as the cause of the mid-early Cambrian (Botomian) extinction event. Geology 24:311–314

    CAS  Google Scholar 

  • Zhuravlev AY, Wood RA (2009) Control on carbonate skeletal mineralogy: global CO2 evolution and mass extinctions. Geology 37:1123–1126

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martin-Garin, B., Montaggioni, L.F. (2023). The Highs and Lows of the Reef Phenomenon. In: Corals and Reefs . Coral Reefs of the World, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-031-16887-1_5

Download citation

Publish with us

Policies and ethics

Navigation