The Efficiency of Convective Heat Exchange at the Airflow of Metal Friction Elements of Brakes

  • Conference paper
  • First Online:
Advanced Manufacturing Processes IV (InterPartner 2022)

Abstract

In the materials of the article, the following issues were examined: border heat layer and its role in the efficiency of convective heat exchange; interaction of dynamic border layer with heat layer in processes of the airflow around surfaces; heat transfer from metal brake friction elements. It has been established that the «longevity» of the boundary dynamic and thermal layers of the surrounding air-heated surfaces of metallic friction elements at the open brake friction pairs are different. What unites them is that the boundary heat layer «sticks» to the metal surface, and the dynamic boundary layer «sticks» to the bottom of the main flow of the surrounding air. The frequency of application of the brake is the main factor in the break-up of the boundary heat layer of the air, which is a kind of insulator for convective heat exchange. The rotation speed of metallic friction elements during injections and open brake friction pairs determines the laminar or turbulent mode of washing with air streams of their surfaces. The dependencies of the total coefficient of resistance (C) on the Reynolds number (Re) during the longitudinal washing by the flow of air with a variable angle of attack (45–125°), the outer surfaces of the rim of the pulley, and the brake drum are determined, By separating zones of constant and significantly decreasing values of coefficient C. The method of calculating heat transfer coefficients which are «closing» in estimating heat transfer coefficients, has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, H., **ng, Z., Wang, F., Cheng, Z.: Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: fundamentals and applications. Chem. Eng. Sci. 195, 462–483 (2018). https://doi.org/10.1016/j.ces.2018.09.045

    Article  Google Scholar 

  2. Ciavarella, M., Johansson, L., Afferante, L., Klarbring, A., Barber, J.: Interaction of thermal contact resistance and frictional heating in thermoelastic instability. Int. J. Solids Struct. 40, 5583–5597 (2003). https://doi.org/10.1016/S0020-7683(03)00313-5

    Article  MATH  Google Scholar 

  3. Nosko, A., Tarasiuk, W., Sharifullin, I., Safronov, E.: Tribotechnical and ecological evaluation of friction pairs of brake devices in lifting and transport machines. Friction Wear 41, 347–353 (2020). https://doi.org/10.3103/S106836662004008X

    Article  Google Scholar 

  4. Javadov, M., Volchenko, D., Skrypnyk, V., Volchenko, N., Vudvud, A.: Physical methods for evaluating the load of friction pairs of braking devices (Part I). Herald Azerbaijan Eng. Acad. 13(2), 58–68 (2021). https://doi.org/10.52171/2076-0515_2021_13_02_58_68

    Article  Google Scholar 

  5. Dzhanakhmedov, A., Volchenko, D.: Design and Verification Calculation of Frictional Units of Tape-Shoe Brakes of Draw Works. Apostrophe, Baku (2016)

    Google Scholar 

  6. Han, J., Wright, L.: Analytical Heat Transfer, 2nd edn. CRC Press, Boca Raton (2022). https://doi.org/10.1201/9781003164487

  7. Al-Maghalseh, M., Mahkamov, K.: Methods of heat transfer intensification in PCM thermal storage systems. Renew. Sustain. Energy Rev. 92, 62–94 (2018). https://doi.org/10.1016/j.rser.2018.04.064

    Article  Google Scholar 

  8. Howell, J., Mengüç, M., Daun, K., Siegel, R.: Thermal Radiation Heat Transfer, 7th edn. CRC Press, Boca Raton (2020). https://doi.org/10.1201/9780429327308

  9. Özişik, M., Orlande, H., Colaço, M., Cotta, R.: Finite Difference Methods in Heat Transfer, 2nd edn. CRC Press, Boca Raton (2017). https://doi.org/10.1201/9781315121475

  10. Volchenko, N., et al.: Features of the estimation of the intensity of heat exchange in self-ventilated disk-shoe brakes of vehicles. East.-Eur. J. Enterp. Technol. 5(97), 47–53 (2019). https://doi.org/10.15587/1729-4061.2019.154712

    Article  Google Scholar 

  11. Volchenko, N., Volchenko, D., Polyakov, P., Krasin, P., Fedotov, E., Evchenko, A.: Pulse-contact frictional interaction of microprotrusions of friction pairs of brake devices. IOP Conf. Ser. Mater. Sci. Eng. 560, 012194 (2019). https://doi.org/10.1088/1757-899X/560/1/012194

    Article  Google Scholar 

  12. Lee, J., Ramamurthi, K.: Fundamentals of Thermodynamics, 1st edn. CRC Press, Boca Raton (2022). https://doi.org/10.1201/9781003224044

  13. Belyakov, N., Nosko, A.: Heat frictional contact of semi-bounded solids. Motorization Power Ind. Agric. 10(A), 83–91 (2008)

    Google Scholar 

  14. Belyakov, N., Nosko, A.: Non-ideal Thermal Contact of Bodies During Friction. Librokom (2010)

    Google Scholar 

  15. Zhang, S., et al.: Simulation study on friction and wear law of brake pad in high-power disc brake. Math. Probl. Eng. 2019, 6250694 (2019). https://doi.org/10.1155/2019/6250694

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Vudvud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skripnik, V., Vudvud, O., Zhuravlev, D., Nikipchuk, S., Danulyak, T. (2023). The Efficiency of Convective Heat Exchange at the Airflow of Metal Friction Elements of Brakes. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes IV. InterPartner 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-16651-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16651-8_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16650-1

  • Online ISBN: 978-3-031-16651-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation