Multi-Criteria Decision-Making for Sustainable Transport: A Case Study on Traffic Flow Prediction Using Spatial–Temporal Traffic Sequence

  • Chapter
  • First Online:
Sustainability

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 333))

Abstract

Traffic flow on highways exhibits a dynamic phenomenon in different operational settings. The concept of sustainability in transportation engineering is elucidated using multi-criteria decision-making analysis (MCDA), a discipline of Operation Research (OR) which is in a wide range of applications and practices in real-time traffic engineering. The principle criteria considered in the study of short-term prediction of traffic flow rate are spatial and temporal information. The spatial–temporal components of physical traffic flow are the parametric measures. Exploring the intrinsic relationship between these measures helps in realizing the dynamics of traffic flow rate. Hence, the objective of this chapter is to elucidate the significance of MCDA considering the spatial and temporal measures of traffic flow rate. Also, this chapter presents a case study on the formulation of algorithm for the prediction of traffic flow rate on highways. Experimental results are reported with an estimation of time complexity of algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 71.68
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 90.94
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 128.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Deek, H. M., Mohamed, A. A., & Radwan, E. A. (1999). New model for evaluation of traffic operations at electronic toll collection plazas. Transportation Research Record, 1710(1519), 1–10.

    Google Scholar 

  • Barbosa-Povoa, A. P., da Silva, C., & Carvalho, A. (2018). Opportunities and challenges in sustainable supply chain: An operations research perspective. European Journal of Operational Research, 268(2), 399–431.

    Article  Google Scholar 

  • Bauer, R., & Delling, D. (2009). SHARC: Fast and robust unidirectional routing. ACM Journal of Experimental Algorithmics, 14(4), 4–29.

    Google Scholar 

  • Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., & Wagner, D. (2010). Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm. Journal of Experimental Algorithmics, Lecture notes in Computer Science, 5038, 303–318.

    Article  Google Scholar 

  • Brunel, E., Delling, D., Gemsa, A., & Wagner, D. (2010). Space-efficient SHARC-routing, proceedings of ninth international symposium on experimental algorithm (pp. 47–58).

    Google Scholar 

  • Cai, P., Wang, Y., Lu, G., Chen, P., Ding, C., & Sun, J. (2016). A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting. Transportation Research - Part C, 62(1), 21–34.

    Article  Google Scholar 

  • Chandra, S. R., & Al-Deek, H. (2008). Cross-correlation analysis and multivariate prediction of spatial time series of freeway traffic speeds. Transportation Research Record Journal of Transportation Research Board, 2061(1), 64–76.

    Article  Google Scholar 

  • Cheng, T., Haworth, J., & Wang, J. (2012). Spatio-temporal autocorrelation of road network data. Journal of Geographical Systems, 14(4), 389–413.

    Article  Google Scholar 

  • Demiryurek, U., Banaei-Kashani, E., & Shahabi, C. (2011). Online computation of fastest path in time dependent spatial networks. In International Symposium on Spatial and Temporal Databases, pp. 92–111.

    Google Scholar 

  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerical Mathematics, 1(1), 269–271.

    Article  Google Scholar 

  • Ermagun, A., & Levinson, D. (2018). Spatiotemporal traffic forecasting: Review and proposed directions. Transport Reviews, 38(6), 786–814.

    Article  Google Scholar 

  • Geisberger, R., Sanders, P., Schultes, D., Delling, D., & Vetter, C. (2012). Exact routing in large road networks using contraction hierarchies. Transportation Science, 46(3), 388–404.

    Article  Google Scholar 

  • Goldberg, A. V., & Harrelson, C. (2003). Computing the shortest path: A* search meets graph theory. Proceedings of ACM Symposium on Discrete Algorithms, 2003, 156–165.

    Google Scholar 

  • Habtemichael, F. G., & Cetin, M. (2016). Short-term traffic flow rate forecasting based on identifying similar traffic patterns. Transportation Research Part C, 66(5), 61–78.

    Article  Google Scholar 

  • Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.

    Article  Google Scholar 

  • Huang, W., Song, G., & Hong, H. (2014). Deep architecture for traffic flow prediction: Deep belief networks with multitask learning. IEEE Transaction on Intelligent Transport Systems, 15(5), 2191–2201.

    Article  Google Scholar 

  • Jayanthi, G. (2021). Design of Algorithm for IoT-based application: Case study on intelligent transport systems. International series in operations research & management science. In F. P. G. Márquez & B. Lev (Eds.), Internet of Things, chapter 0 (pp. 227–249). Springer.

    Google Scholar 

  • Jayanthi, G., & García Márquez, F. P. (2021a). Travel time based traffic rerouting by augmenting traffic flow network with temporal and spatial relations for congestion management. Springer. https://doi.org/10.1007/978-3-030-79203-9_43

    Book  Google Scholar 

  • Jayanthi, G., & García Márquez, F. P. (2021b). Data mining and information technology in transportation—A review. In J. Xu, F. P. García Márquez, M. H. Ali Hassan, G. Duca, A. Hajiyev, & F. Altiparmak (Eds.), Proceedings of the Fifteenth International Conference on Management Science and Engineering Management. ICMSEM 2021. Lecture Notes on Data Engineering and Communications Technologies (Vol. 79). Springer. https://doi.org/10.1007/978-3-030-79206-0_64

    Chapter  Google Scholar 

  • Jayanthi, G., & Jothilakshmi, P. (2019). Prediction of traffic volume by mining traffic sequences using travel time based PrefixSpan. IET Intelligent Transport Systems, 13(7), 1199–1210. https://doi.org/10.1049/iet-its.2018.5165

    Article  Google Scholar 

  • Jayanthi, G., & Jothilakshmi, P. (2021). Traffic time series forecasting on highways - A contemporary survey of models, methods and techniques. International Journal of Logistics Systems and Management, 39(1), 77–110.

    Article  Google Scholar 

  • Kamarianakis, Y., & Prastacos, P. (2003). Forecasting traffic flow conditions in an urban network: Comparison of multivariate and univariate approaches. Transportation Research Record Journal of Transportation Research Board, 1857(3), 74–84.

    Article  Google Scholar 

  • Karlaftis, M. G., & Vlahogianni, E. I. (2011). Statistical methods versus neural networks in transportation research: Differences, similarities and some insights. Transportation Research Part-C, 19(3), 387–399.

    Article  Google Scholar 

  • Kartikay, G., & Niladri, C. (2019). Forecasting through motifs discovered by genetic algorithms. IETE Technical Review, 36(3), 253–264.

    Article  Google Scholar 

  • Lin, J., Keogh, E. J., & Wei, L. D. (2007). Experiencing SAX: A novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2), 107–144.

    Article  Google Scholar 

  • Lv, Y., Duan, Y., & Kang, W. (2015). Traffic flow prediction with big data: A deep learning approach. IEEE Transaction on Intelligent Transport System, 16(2), 865–873.

    Google Scholar 

  • Ma, X., Yu, H., & Wang, Y. (2015). Large-scale transportation network congestion evolution prediction using deep learning theory. PLoS One, 10(30), 1–17.

    Google Scholar 

  • Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., & Wang, Y. (2017). Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction. Sensors, 17(4), 818–828.

    Article  Google Scholar 

  • Min, W., & Wynter, L. (2011). Real-time road traffic prediction with spatio-temporal correlations. Transportation Research Part C, 19(4), 606–616.

    Article  Google Scholar 

  • Nejad, M. M., Mashayekhy, L., Chinnam, R. B., & Anthony, P. (2017). Hierarchical time-dependent shortest path algorithms for vehicle routing under ITS. IIE Transactions, 48(2), 158–169.

    Article  Google Scholar 

  • Park, D., & Rilett, L. R. (1999). Forecasting freeway link travel times with a multilayer feed forward neural network. Computing Civil Infrastructure Engineering, 14(5), 357–367.

    Article  Google Scholar 

  • Seuring, S. (2013). A review of modeling approaches for sustainable supply chain management. Decision Support Systems, 54(4), 1513–1520.

    Article  Google Scholar 

  • Shi, Y., Deng, M., Gong, J., Lu, C., Xuexi, Y., & Liu, H. (2019). Detection of clusters in traffic networks based on spatio-temporal flow modeling. Transactions in GIS, 23(2), 312–333.

    Article  Google Scholar 

  • Wang, C., & Ye, Z. (2015). Traffic flow forecasting based on a hybrid mode. Journal of Intelligent Transport System, 20(5), 428–437.

    Article  Google Scholar 

  • Wangyang, W., Honghai, W., & Huadong, M. (2019). An AutoEncoder and LSTM-based traffic flow prediction method. Sensors, 19(2946), 1–16.

    Google Scholar 

  • Wu, S., Yang, Z., Zhu, X., & Yu, B. (2014). Improved k-NN for short-term traffic forecasting using temporal and spatial information. Journal of Transportation Engineering, 140(7), 1–9.

    Article  Google Scholar 

  • Xu, Y., Chen, H., Kong, Q., Zhai, X., & Liu, Y. (2015). Urban traffic flow prediction: A spatio-temporal variable selection-based approach. Journal of Advanced Transportation, 50(4), 489–506.

    Article  Google Scholar 

  • Zhang, Y., & Zhang, Y. (2016). A comparative study of three multivariate short-term freeway traffic flow forecasting methods with missing data. Journal of Transportation System, 20(3), 205–218.

    Google Scholar 

  • Zhao, Z., Chen, W., Wu, X., Chen, P. C. Y., & Liu, J. (2017). LSTM network: A deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems, 11(2), 68–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanthi Ganapathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganapathy, J. (2023). Multi-Criteria Decision-Making for Sustainable Transport: A Case Study on Traffic Flow Prediction Using Spatial–Temporal Traffic Sequence. In: García Márquez, F.P., Lev, B. (eds) Sustainability. International Series in Operations Research & Management Science, vol 333. Springer, Cham. https://doi.org/10.1007/978-3-031-16620-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16620-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16619-8

  • Online ISBN: 978-3-031-16620-4

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics

Navigation