Arrhythmia Management in the Elderly

  • Chapter
  • First Online:
Cardiovascular Disease in the Elderly

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 728 Accesses

Abstract

The incidence of arrhythmias increases as patients age, likely reflecting both the aging conduction system and the increasing prevalence of comorbidities that promote arrhythmogenesis. Additionally, morbidity and mortality of many arrhythmias increase with age. Arrhythmia management focuses on reducing deleterious outcomes, with progress being made in elderly patient populations. Despite this, arrhythmia management in the elderly remains an under-investigated area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chow GV, Marine JE, Fleg JL. Epidemiology of arrhythmias and conduction disorders in older adults. Clin Geriatr Med. 2012;28(4):539–53. https://www.clinicalkey.es/playcontent/1-s2.0-S0749069012000717. https://doi.org/10.1016/j.cger.2012.07.003.

    Article  Google Scholar 

  2. Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG. Prevalence, age distribution, and gender of patients with atrial fibrillation: analysis and implications. Arch Intern Med (1960). 1995;155(5):469–73. https://doi.org/10.1001/archinte.1995.00430050045005.

    Article  CAS  Google Scholar 

  3. Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: The AnTicoagulation and risk factors in atrial fibrillation (ATRIA) study. JAMA. 2001;285(18):2370–5. https://doi.org/10.1001/jama.285.18.2370.

    Article  CAS  Google Scholar 

  4. Benjamin E, Muntner P, Alonso A, et al. Heart disease and stroke Statistics—2019 update: a report from the American Heart Association. Circulation (New York, NY). 2019;139(10):e56–66. https://www.ncbi.nlm.nih.gov/pubmed/30700139. https://doi.org/10.1161/CIR.0000000000000659.

    Article  Google Scholar 

  5. Lev M. Anatomic basis for atrioventricular block. Am J Med. 1964;37(5):742–8. https://doi.org/10.1016/0002-9343(64)90022-1.

    Article  CAS  Google Scholar 

  6. Davies MJ. Pathology of chronic A-V block. Acta Cardiol. 1976;Suppl 21:19–30. https://www.ncbi.nlm.nih.gov/pubmed/1087803

    CAS  Google Scholar 

  7. Zoob M, Smith KS. Aetiology of complete heart-block. Br Med J. 1963;2(5366):1149–53. https://doi.org/10.1136/bmj.2.5366.1149.

    Article  CAS  Google Scholar 

  8. North B, Sinclair D. The intersection between aging and cardiovascular disease. Circ Res. 2012;110(8):1097–108. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003012-201204130-00013. https://doi.org/10.1161/CIRCRESAHA.111.246876.

    Article  CAS  Google Scholar 

  9. Hodkinson HM, Pomerance A. The clinical significance of senile cardiac amyloidosis: a prospective clinico-pathological study. QJM. 1977;46(3):381–7. https://api.istex.fr/ark:/67375/HXZ-MQ895V3B-P/fulltext.pdf. https://doi.org/10.1093/oxfordjournals.qjmed.a067513.

    Article  CAS  Google Scholar 

  10. Lev M. Aging changes in the human sinoatrial node. J Gerontol. 1954;9:1–8.

    Article  CAS  Google Scholar 

  11. Kistler PM, Sanders P, Fynn SP, et al. Electrophysiologic and electroanatomic changes in the human atrium associated with age. J Am Coll Cardiol. 2004;44(1):109–16. https://doi.org/10.1016/j.jacc.2004.03.044.

    Article  Google Scholar 

  12. Furberg CD, Manolio TA, Psaty BM, et al. Major electrocardiographic abnormalities in persons aged 65 years and older (the cardiovascular health study). Cardiovascular Health Study Collaborative Research Group. Am J Cardiol. 1992;69(16):1329–35. https://www.ncbi.nlm.nih.gov/pubmed/1585868

    Article  CAS  Google Scholar 

  13. Östör E, Jensen G, Nyboe J, Hansen AT. Electrocardiographic findings and their association with mortality in the Copenhagen City Heart Study. Eur Heart J. 1981;2(4):317–28. https://api.istex.fr/ark:/67375/HXZ-MD03WLW2-K/fulltext.pdf. https://doi.org/10.1093/oxfordjournals.eurheartj.a061212.

    Article  Google Scholar 

  14. Caird FI, Campbell A, Jackson TF. Significance of abnormalities of electrocardiogram in old people. Br Heart J. 1974;36(10):1012–8. https://doi.org/10.1136/hrt.36.10.1012.

    Article  CAS  Google Scholar 

  15. Molander U, Kumar Dey D, Sundh V, Steen B. ECG abnormalities in the elderly: prevalence, time and generation trends and association with mortality. Aging Clin Exp Res. 2003;15(6):488–93. https://www.ncbi.nlm.nih.gov/pubmed/14959952. https://doi.org/10.1007/BF03327371.

    Article  Google Scholar 

  16. Sundstrom J, Lind L, Arnlov J, Zethelius B, Andren B, Lithell HO. Echocardiographic and electrocardiographic diagnoses of left ventricular hypertrophy predict mortality independently of each other in a population of elderly men. Circulation. 2001;103(19):2346–51. http://circ.ahajournals.org/cgi/content/abstract/103/19/2346. https://doi.org/10.1161/01.CIR.103.19.2346.

    Article  CAS  Google Scholar 

  17. Kannel WB, Dannenberg AL, Levy D. Population implications of electrocardiographic left ventricular hypertrophy. Am J Cardiol. 1987;60(17):85–93. https://doi.org/10.1016/0002-9149(87)90466-8.

    Article  Google Scholar 

  18. Seifer C, Kenny RA. The prevalence of falls in older persons paced for atrioventricular block and sick sinus syndrome. Am J Geriatr Cardiol. 2003;12(5):298–305. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1076-7460.2003.01854.x. https://doi.org/10.1111/j.1076-7460.2003.01854.x.

    Article  Google Scholar 

  19. Lamas GA, Pashos CL, Normand ST, McNeil B. Permanent pacemaker selection and subsequent survival in elderly Medicare pacemaker recipients. Circulation. 1995;91(4):1063–9. http://circ.ahajournals.org/cgi/content/abstract/91/4/1063. https://doi.org/10.1161/01.CIR.91.4.1063.

    Article  CAS  Google Scholar 

  20. Cosedis Nielsen J, Thomsen PEB, Christensen PD, et al. A comparison of single-lead atrial pacing with dual-chamber pacing in sick sinus syndrome. Eur Heart J. 2011;32(6):686–96. https://www.ncbi.nlm.nih.gov/pubmed/21300730. https://doi.org/10.1093/eurheartj/ehr022.

    Article  Google Scholar 

  21. Lown B. Electrical reversion of cardiac arrhythmias. Br Heart J. 1967;29(4):469–89. https://doi.org/10.1136/hrt.29.4.469.

    Article  CAS  Google Scholar 

  22. Csepe TA, Kalyanasundaram A, Hansen BJ, Zhao J, Fedorov VV. Fibrosis: a structural modulator of sinoatrial node physiology and dysfunction. Front Physiol. 2015;6:37. https://www.ncbi.nlm.nih.gov/pubmed/25729366. https://doi.org/10.3389/fphys.2015.00037.

    Article  Google Scholar 

  23. Kusumoto FM, Schoenfeld MH, Barrett C, et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society. Heart Rhythm. 2019;16(9):e128–226. https://www.ncbi.nlm.nih.gov/pubmed/30412778. https://doi.org/10.1016/j.hrthm.2018.10.037.

    Article  Google Scholar 

  24. Lamas GA, Lee KL, Sweeney MO, et al. Ventricular pacing or dual-chamber pacing for sinus-node dysfunction. N Engl J Med. 2002;346(24):1854–62. http://content.nejm.org/cgi/content/abstract/346/24/1854. https://doi.org/10.1056/NEJMoa013040.

    Article  Google Scholar 

  25. Sweeney MO, Bank AJ, Nsah E, et al. Minimizing ventricular pacing to reduce atrial fibrillation in sinus-node disease. N Engl J Med. 2007;357(10):1000–8. http://content.nejm.org/cgi/content/abstract/357/10/1000. https://doi.org/10.1056/NEJMoa071880.

    Article  CAS  Google Scholar 

  26. Song Y, Yao Q, Zhu J, Luo B, Liang S. Age-related variation in the interstitial tissues of the cardiac conduction system; and autopsy study of 230 Han Chinese. Forensic Sci Int. 1999;104(2):133–42. https://doi.org/10.1016/S0379-0738(99)00103-6.

    Article  CAS  Google Scholar 

  27. Cheng S, Keyes MJ, Larson MG, et al. Long-term outcomes in individuals with prolonged PR interval or first-degree atrioventricular block. JAMA. 2009;301(24):2571–7. https://doi.org/10.1001/jama.2009.888.

    Article  CAS  Google Scholar 

  28. Kwok CS, Rashid M, Beynon R, et al. Prolonged PR interval, first-degree heart block and adverse cardiovascular outcomes: a systematic review and meta-analysis. Heart. 2016;102(9):672–80. https://doi.org/10.1136/heartjnl-2015-308956.

    Article  CAS  Google Scholar 

  29. Tayal B, Fruelund P, Sogaard P, et al. Incidence of heart failure after pacemaker implantation: a nationwide Danish Registry-based follow-up study. Eur Heart J. 2019;40(44):3641–8. https://www.ncbi.nlm.nih.gov/pubmed/31504437. https://doi.org/10.1093/eurheartj/ehz584.

    Article  Google Scholar 

  30. Eriksson P, Hansson P, Eriksson H, Dellborg M. Bundle-branch block in a general male population: the study of men born 1913. Circulation. 1998;98(22):2494–500. http://circ.ahajournals.org/cgi/content/abstract/98/22/2494. https://doi.org/10.1161/01.CIR.98.22.2494.

    Article  CAS  Google Scholar 

  31. McAnulty JH, Rahimtoola SH, Murphy E, et al. Natural history of “high-risk” bundle-branch block: final report of a prospective study. N Engl J Med. 1982;307(3):137–43. http://content.nejm.org/cgi/content/abstract/307/3/137. https://doi.org/10.1056/NEJM198207153070301.

    Article  CAS  Google Scholar 

  32. 2021 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2021;42(35):3427–520. https://search.proquest.com/docview/2566265368. https://doi.org/10.1093/eurheartj/ehab364.

  33. Page RL, Joglar JA, Caldwell MA, et al. 2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2016;67(13):e27–e115. https://www.ncbi.nlm.nih.gov/pubmed/26409259. https://doi.org/10.1016/j.jacc.2015.08.856.

    Article  Google Scholar 

  34. Wu D, Denes P, Amat-Y-Leon F, et al. Clinical, electrocardiographic and electrophysiologic observations in patients with paroxysmal supraventricular tachycardia. Am J Cardiol. 1978;41(6):1045–51. https://doi.org/10.1016/0002-9149(78)90856-1.

    Article  CAS  Google Scholar 

  35. Brembilla-Perrot B, Houriez P, Beurrier D, et al. Influence of age on the electrophysiological mechanism of paroxysmal supraventricular tachycardias. Int J Cardiol. 2001;78(3):293–8. https://doi.org/10.1016/S0167-5273(01)00392-8.

    Article  CAS  Google Scholar 

  36. Chrispin J, Misra S, Marine JE, et al. Current management and clinical outcomes for catheter ablation of atrioventricular nodal re-entrant tachycardia. Europace (London, England). 2018;20(4):e51–9. https://www.ncbi.nlm.nih.gov/pubmed/28541507. https://doi.org/10.1093/europace/eux110.

    Article  Google Scholar 

  37. Katritsis DG, Zografos T, Siontis KC, et al. Endpoints for successful slow pathway catheter ablation in typical and Atypical Atrioventricular nodal re-entrant tachycardia: a contemporary, multicenter study. JACC Clin Electrophysiol. 2019;5(1):113–9. https://www.ncbi.nlm.nih.gov/pubmed/30678775. https://doi.org/10.1016/j.jacep.2018.09.012.

    Article  Google Scholar 

  38. Nelson SD, Kou WH, Annesley T, de Buitleir M, Morady F. Significance of ST segment depression during paroxysmal supraventricular tachycardia. J Am Coll Cardiol. 1988;12(2):383. http://content.onlinejacc.org/cgi/content/abstract/12/2/383

    Article  CAS  Google Scholar 

  39. Paparella N, Ouyang F, Fucă G, Kuck K, Cappato R, Alboni P. Significance of newly acquired negative T waves after interruption of paroxysmal reentrant supraventricular tachycardia with narrow QRS complex. Am J Cardiol. 2000;85(2):261–3. https://doi.org/10.1016/S0002-9149(99)00633-5.

    Article  CAS  Google Scholar 

  40. Zaman S, Sayami LA, Rahim MA, et al. Significance of ST-segment depression during paroxysmal supraventricular tachycardia. Cardiovasc J. 2015;7(2):93–7. https://doi.org/10.3329/cardio.v7i2.22249.

    Article  Google Scholar 

  41. Bukkapatnam RN, Robinson M, Turnipseed S, Tancredi D, Amsterdam E, Srivatsa UN. Relationship of myocardial ischemia and injury to coronary artery disease in patients with supraventricular tachycardia. Am J Cardiol. 2010;106(3):374–7. https://www.clinicalkey.es/playcontent/1-s2.0-S0002914910007848. https://doi.org/10.1016/j.amjcard.2010.03.035.

    Article  Google Scholar 

  42. Kastor JA. Multifocal atrial tachycardia. Card Electrophysiol Rev. 2001;5(2):294. https://search.proquest.com/docview/213614786. https://doi.org/10.1023/A:1011430227366.

    Article  Google Scholar 

  43. McCord J, Borzak S. Multifocal atrial tachycardia. Chest. 1998;113(1):203–9. https://doi.org/10.1378/chest.113.1.203.

    Article  CAS  Google Scholar 

  44. Lazaros G, Chrysohoou C, Oikonomou E, et al. The natural history of multifocal atrial rhythms in elderly outpatients: insights from the “Ikaria Study”. Ann Noninvasive Electrocardiol. 2014;19(5):483–9. https://api.istex.fr/ark:/67375/WNG-H0S6WCB6-8/fulltext.pdf. https://doi.org/10.1111/anec.12165.

    Article  Google Scholar 

  45. Granada J, Uribe W, Chyou P, et al. Incidence and predictors of atrial flutter in the general population. J Am Coll Cardiol. 2000;36(7):2242–6. https://doi.org/10.1016/S0735-1097(00)00982-7.

    Article  CAS  Google Scholar 

  46. Hall BW, Bialy DJ, Lehmann MH. Hospitalizations for arrhythmias in the United States, 1985 through 1999: importance of atrial fibrillation. J Am Coll Cardiol. 2002;39:89. https://doi.org/10.1016/S0735-1097(02)80382-5.

    Article  Google Scholar 

  47. January C, Wann L, Alpert J, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines and the Heart Rhythm Society. Circulation (New York, NY). 2014;130(23):2071–104. https://www.ncbi.nlm.nih.gov/pubmed/24682348. https://doi.org/10.1161/CIR.0000000000000040.

    Article  Google Scholar 

  48. January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2019;74(1):104–32. https://www.ncbi.nlm.nih.gov/pubmed/30703431. https://doi.org/10.1016/j.jacc.2019.01.011.

    Article  Google Scholar 

  49. Natale A, Newby KH, Pisanó E, et al. Prospective randomized comparison of antiarrhythmic therapy versus first-line radiofrequency ablation in patients with atrial flutter. J Am Coll Cardiol. 2000;35(7):1898–904. https://doi.org/10.1016/S0735-1097(00)00635-5.

    Article  CAS  Google Scholar 

  50. Spector P, Reynolds MR, Calkins H, et al. Meta-analysis of ablation of atrial flutter and supraventricular tachycardia. Am J Cardiol. 2009;104(5):671–7. https://www.clinicalkey.es/playcontent/1-s2.0-S000291490901008X. https://doi.org/10.1016/j.amjcard.2009.04.040.

    Article  Google Scholar 

  51. Perez FJ, Schubert CM, Parvez B, Pathak V, Ellenbogen KA, Wood MA. Long-term outcomes after catheter ablation of cavo-tricuspid isthmus dependent atrial flutter: a meta-analysis. Circ Arrhythm Electrophysiol. 2009;2(4):393–401. http://circep.ahajournals.org/cgi/content/abstract/2/4/393. https://doi.org/10.1161/CIRCEP.109.871665.

    Article  Google Scholar 

  52. Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation (New York, NY). 2021;143(8):e254–743. https://www.ncbi.nlm.nih.gov/pubmed/33501848. https://doi.org/10.1161/CIR.0000000000000950.

    Article  Google Scholar 

  53. Piccini JP, Hammill BG, Sinner MF, et al. Incidence and prevalence of atrial fibrillation and associated mortality among Medicare beneficiaries, 1993–2007. Circ Cardiovasc Qual Outcomes. 2012;5(1):85–93. https://www.ncbi.nlm.nih.gov/pubmed/22235070. https://doi.org/10.1161/CIRCOUTCOMES.111.962688.

    Article  Google Scholar 

  54. Staerk L, Wang B, Preis SR, et al. Lifetime risk of atrial fibrillation according to optimal, borderline, or elevated levels of risk factors: cohort study based on longitudinal data from the Framingham Heart Study. BMJ. 2018;361:k1453. https://doi.org/10.1136/bmj.k1453.

    Article  Google Scholar 

  55. Helgadottir S, Sigurdsson MI, Ingvarsdottir IL, Arnar DO, Gudbjartsson T. Atrial fibrillation following cardiac surgery: risk analysis and long-term survival. J Cardiothorac Surg. 2012;7(1):87. https://www.ncbi.nlm.nih.gov/pubmed/22992266. https://doi.org/10.1186/1749-8090-7-87.

    Article  Google Scholar 

  56. Lin M, Kamel H, Singer D, Wu Y, Lee M, Ovbiagele B. Perioperative/postoperative atrial fibrillation and risk of subsequent stroke and/or mortality: a meta-analysis. Stroke (1970). 2019;50(6):1364–71. https://doi.org/10.1161/STROKEAHA.118.023921.

    Article  Google Scholar 

  57. Whitlock RP, Belley-Cote EP, Paparella D, et al. Left atrial appendage occlusion during cardiac surgery to prevent stroke. N Engl J Med. 2021;384(22):2081–91. https://doi.org/10.1056/NEJMoa2101897.

    Article  Google Scholar 

  58. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22(8):983–8. http://stroke.ahajournals.org/cgi/content/abstract/22/8/983. https://doi.org/10.1161/01.STR.22.8.983.

    Article  CAS  Google Scholar 

  59. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation: analysis of pooled data from five randomized controlled trials. Arch Intern Med (1960). 1994;154(13):1449–57. https://doi.org/10.1001/archinte.1994.00420130036007.

  60. Kannel WB, Abbott RD, Savage DD, McNamara PM. Epidemiologic features of chronic atrial fibrillation: the Framingham Study. N Engl J Med. 1982;306(17):1018–22. http://content.nejm.org/cgi/content/abstract/306/17/1018. https://doi.org/10.1056/NEJM198204293061703.

    Article  CAS  Google Scholar 

  61. Kopecky SL, Gersh BJ, McGoon MD, et al. Lone atrial fibrillation in elderly persons: a marker for cardiovascular risk. Arch Intern Med (1960). 1999;159(10):1118–22. https://doi.org/10.1001/archinte.159.10.1118.

    Article  CAS  Google Scholar 

  62. Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659–66. http://content.nejm.org/cgi/content/abstract/339/10/659. https://doi.org/10.1056/NEJM199809033391003.

    Article  CAS  Google Scholar 

  63. Bah A, Nuotio I, Grönberg T, Ylitalo A, Airaksinen KEJ, Hartikainen JEK. Sex, age, and time to cardioversion. Risk factors for cardioversion of acute atrial fibrillation from the FinCV study. Ann Med (Helsinki). 2017;49(3):254–9. https://doi.org/10.1080/07853890.2016.1267869.

    Article  Google Scholar 

  64. Nuotio I, Hartikainen JEK, Grönberg T, Biancari F, Airaksinen KEJ. Time to cardioversion for acute atrial fibrillation and thromboembolic complications. JAMA. 2014;312(6):647–9. https://doi.org/10.1001/jama.2014.3824.

    Article  CAS  Google Scholar 

  65. Lundstrom T, Ryden L. Chronic atrial fibrillation: long term results of direct current conversion. Acta Med Scand. 1988;223(1):53–9. https://www.ncbi.nlm.nih.gov/pubmed/3348103. https://doi.org/10.1111/j.0954-6820.1988.tb15764.x.

    Article  CAS  Google Scholar 

  66. Danias PG, Caulfield TA, Weigner MJ, Silverman DI, Manning WJ. Likelihood of spontaneous conversion of atrial fibrillation to sinus rhythm. J Am Coll Cardiol. 1998;31(3):588–92. https://doi.org/10.1016/S0735-1097(97)00534-2.

    Article  CAS  Google Scholar 

  67. Flaker GC, Fletcher KA, Rothbart RM, Halperin JL, Hart RG. Clinical and echocardiographic features of intermittent atrial fibrillation that predict recurrent atrial fibrillation. Stroke Prevention in Atrial Fibrillation (SPAF) Investigators. Am J Cardiol. 1995;76(5):355–8. https://www.ncbi.nlm.nih.gov/pubmed/7639159

    Article  CAS  Google Scholar 

  68. Dittrich HC, Pearce LA, Asinger RW, et al. Left atrial diameter in nonvalvular atrial fibrillation: an echocardiographic study. Stroke Prevention in Atrial Fibrillation Investigators. Am Heart J. 1999;137(3):494–9. https://www.ncbi.nlm.nih.gov/pubmed/10047632

    Article  CAS  Google Scholar 

  69. Duytschaever M, Haerynck F, Tavernier R, Jordaens L. Factors influencing long term persistence of sinus rhythm after a first electrical cardioversion for atrial fibrillation. Pacing Clin Electrophysiol. 1998;21(1):284–7. https://api.istex.fr/ark:/67375/WNG-BV7TG2Z0-8/fulltext.pdf. https://doi.org/10.1111/j.1540-8159.1998.tb01105.x.

    Article  CAS  Google Scholar 

  70. Lau DH, Nattel S, Kalman JM, Sanders P. Modifiable risk factors and atrial fibrillation. Circulation (New York, NY). 2017;136(6):583–96. https://www.ncbi.nlm.nih.gov/pubmed/28784826. https://doi.org/10.1161/CIRCULATIONAHA.116.023163.

    Article  Google Scholar 

  71. Mittal S, Ayati S, Stein KM, et al. Transthoracic cardioversion of atrial fibrillation: comparison of rectilinear biphasic versus damped sine wave monophasic shocks. Circulation. 2000;101(11):1282–7. http://circ.ahajournals.org/cgi/content/abstract/101/11/1282. https://doi.org/10.1161/01.CIR.101.11.1282.

    Article  CAS  Google Scholar 

  72. Kirchhof P, Eckardt L, Loh P, et al. Anterior-posterior versus anterior-lateral electrode positions for external cardioversion of atrial fibrillation: a randomised trial. The Lancet (British edition). 2002;360(9342):1275–9. https://doi.org/10.1016/S0140-6736(02)11315-8.

    Article  Google Scholar 

  73. Schmidt AS, Lauridsen KG, Torp P, Bach LF, Rickers H, Løfgren B. Maximum-fixed energy shocks for cardioverting atrial fibrillation. Eur Heart J. 2020;41(5):626–31. https://www.ncbi.nlm.nih.gov/pubmed/31504412. https://doi.org/10.1093/eurheartj/ehz585.

    Article  Google Scholar 

  74. Bunch TJ, Crandall BG, Weiss JP, et al. Patients treated with catheter ablation for atrial fibrillation have long-term rates of death, stroke, and dementia similar to patients without atrial fibrillation. J Cardiovasc Electrophysiol. 2011;22(8):839–45. https://api.istex.fr/ark:/67375/WNG-DDNS3844-7/fulltext.pdf. https://doi.org/10.1111/j.1540-8167.2011.02035.x.

    Article  Google Scholar 

  75. Reynolds MR, Gunnarsson CL, Hunter TD, et al. Health outcomes with catheter ablation or antiarrhythmic drug therapy in atrial fibrillation: results of a propensity-matched analysis. Circ Cardiovasc Qual Outcomes. 2012;5(2):171–81. https://www.ncbi.nlm.nih.gov/pubmed/22373904. https://doi.org/10.1161/CIRCOUTCOMES.111.963108.

    Article  Google Scholar 

  76. Packer DL, Mark DB, Robb RA, et al. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA. 2019;321(13):1261–74. https://doi.org/10.1001/jama.2019.0693.

    Article  CAS  Google Scholar 

  77. Hunter RJ, McCready J, Diab I, et al. Maintenance of sinus rhythm with an ablation strategy in patients with atrial fibrillation is associated with a lower risk of stroke and death. Heart. 2012;98(1):48–53. https://doi.org/10.1136/heartjnl-2011-300720.

    Article  Google Scholar 

  78. Kirchhof P, Camm AJ, Goette A, et al. Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med. 2020;383(14):1305–16. https://doi.org/10.1056/NEJMoa2019422.

    Article  Google Scholar 

  79. Van Gelder IC, Groenveld HF, Crijns HJGM, et al. Lenient versus strict rate control in patients with atrial fibrillation. N Engl J Med. 2010;362(15):1363–73. https://doi.org/10.1056/NEJMoa1001337.

    Article  Google Scholar 

  80. Lopes RD, Rordorf R, De Ferrari GM, et al. Digoxin and mortality in patients with atrial fibrillation. J Am Coll Cardiol. 2018;71(10):1063–74. https://doi.org/10.1016/j.jacc.2017.12.060.

    Article  CAS  Google Scholar 

  81. Bavendiek U, Berliner D, Dávila LA, et al. Rationale and design of the DIGIT-HF trial (DIGitoxin to improve ouTcomes in patients with advanced chronic heart failure): a randomized, double-blind, placebo-controlled study. Eur J Heart Fail. 2019;21(5):676–84. https://onlinelibrary.wiley.com/doi/abs/10.1002/ejhf.1452. https://doi.org/10.1002/ejhf.1452.

    Article  CAS  Google Scholar 

  82. Kochiadakis GE, Igoumenidis NE, Solomou MC, Kaleboubas MD, Chlouverakis GI, Vardas PE. Efficacy of amiodarone for the termination of persistent atrial fibrillation. Am J Cardiol. 1999;83(1):58–61. https://doi.org/10.1016/S0002-9149(98)00783-8.

    Article  CAS  Google Scholar 

  83. Roy D, Talajic M, Dorian P, et al. Amiodarone to prevent recurrence of atrial fibrillation. N Engl J Med. 2000;342(13):913–20. http://content.nejm.org/cgi/content/abstract/342/13/913. https://doi.org/10.1056/NEJM200003303421302.

    Article  CAS  Google Scholar 

  84. Singh BN, Singh SN, Reda DJ, et al. Amiodarone versus sotalol for atrial fibrillation. N Engl J Med. 2005;352(18):1861–72. http://content.nejm.org/cgi/content/abstract/352/18/1861. https://doi.org/10.1056/NEJMoa041705.

    Article  CAS  Google Scholar 

  85. Dorian P, Mangat I. Maintenance of sinus rhythm in patients with atrial fibrillation: an AFFIRM substudy of the first antiarrhythmic drug. J Am Coll Cardiol. 2003;42(1):20–32. http://content.onlinejacc.org/cgi/content/abstract/42/1/20. https://doi.org/10.1016/S0735-1097(03)00559-X.

    Article  Google Scholar 

  86. Alboni P, Botto GL, Baldi N, et al. Outpatient treatment of recent-onset atrial fibrillation with the “pill-in-the-pocket” approach. N Engl J Med. 2004;351(23):2384–91. http://content.nejm.org/cgi/content/abstract/351/23/2384. https://doi.org/10.1056/NEJMoa041233.

    Article  CAS  Google Scholar 

  87. Hohnloser SH, Kuck K, Lilienthal J. Rhythm or rate control in atrial fibrillation—pharmacological intervention in atrial fibrillation (PIAF): a randomised trial. Lancet. 2000;356(9244):1789–94. https://doi.org/10.1016/S0140-6736(00)03230-X.

    Article  CAS  Google Scholar 

  88. Jo C, Miketic S, Windeler J, et al. Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation: the strategies of treatment of Atrial Fibrillation (STAF) Study. J Am Coll Cardiol. 2003;41(10):1690–6. http://content.onlinejacc.org/cgi/content/abstract/41/10/1690. https://doi.org/10.1016/S0735-1097(03)00332-2.

    Article  Google Scholar 

  89. Wyse DG, Waldo AL, DiMarco JP, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002;347(23):1825–33. http://content.nejm.org/cgi/content/abstract/347/23/1825. https://doi.org/10.1056/NEJMoa021328.

    Article  CAS  Google Scholar 

  90. Van Gelder IC, Hagens VE, Bosker HA, et al. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med. 2002;347(23):1834–40. http://content.nejm.org/cgi/content/abstract/347/23/1834. https://doi.org/10.1056/NEJMoa021375.

    Article  Google Scholar 

  91. Marrouche NF, Brachmann J, Andresen D, et al. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;378(5):417–27. https://doi.org/10.1056/NEJMoa1707855.

    Article  Google Scholar 

  92. Di Biase L, Mohanty P, Mohanty S, et al. Ablation versus amiodarone for treatment of persistent atrial fibrillation in patients with congestive heart failure and an implanted device: results from the AATAC multicenter randomized trial. Circulation (New York, NY). 2016;133(17):1637–44. https://www.ncbi.nlm.nih.gov/pubmed/27029350. https://doi.org/10.1161/CIRCULATIONAHA.115.019406.

    Article  CAS  Google Scholar 

  93. Wazni OM, Dandamudi G, Sood N, et al. Cryoballoon ablation as initial therapy for atrial fibrillation. N Engl J Med. 2021;384(4):316–24. https://doi.org/10.1056/NEJMoa2029554.

    Article  CAS  Google Scholar 

  94. Andrade JG, Wells GA, Deyell MW, et al. Cryoablation or drug therapy for initial treatment of atrial fibrillation. N Engl J Med. 2021;384(4):305–15. https://doi.org/10.1056/NEJMoa2029980.

    Article  CAS  Google Scholar 

  95. Kimura S, Bassett AL, Kohya T, Kozlovskis PL, Myerburg RJ. Simultaneous recording of action potentials from endocardium and epicardium during ischemia in the isolated cat ventricle: relation of temporal electrophysiologic heterogeneities to arrhythmias. Circulation. 1986;74(2):401–9. http://circ.ahajournals.org/cgi/content/abstract/74/2/401. https://doi.org/10.1161/01.CIR.74.2.401.

    Article  CAS  Google Scholar 

  96. Fleg JL, Lakatta EG. Prevalence and prognosis of exercise-induced nonsustained ventricular tachycardia in apparently healthy volunteers. Am J Cardiol. 1984;54(7):762–4. https://doi.org/10.1016/S0002-9149(84)80204-0.

    Article  CAS  Google Scholar 

  97. Mirowski M, Reid PR, Mower MM, et al. Termination of malignant ventricular arrhythmias with an implanted automatic defibrillator in human beings. N Engl J Med. 1980;303(6):322–4. https://doi.org/10.1056/NEJM198008073030607.

    Article  CAS  Google Scholar 

  98. Hasselqvist-Ax I, Riva G, Herlitz J, et al. Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest. N Engl J Med. 2015;372(24):2307–15. https://doi.org/10.1056/NEJMoa1405796.

    Article  CAS  Google Scholar 

  99. Chan P, McNally B, Tang F, Kellermann A. Recent trends in survival from out-of-hospital cardiac arrest in the United States. Circulation (New York, NY). 2014;130(21):1876–82. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003017-201411180-00008. https://doi.org/10.1161/CIRCULATIONAHA.114.009711.

    Article  Google Scholar 

  100. The Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med. 1997;337(22):1576–84. http://content.nejm.org/cgi/content/abstract/337/22/1576. https://doi.org/10.1056/NEJM199711273372202.

    Article  Google Scholar 

  101. Connolly SJ, Hallstrom AP, Cappato R, et al. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs Implantable Defibrillator Study. Cardiac Arrest Study Hamburg. Canadian Implantable Defibrillator Study. Eur Heart J. 2000;21(24):2071–8. https://www.ncbi.nlm.nih.gov/pubmed/11102258

    Article  CAS  Google Scholar 

  102. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2018;72(14):e91–e220. https://www.ncbi.nlm.nih.gov/pubmed/29097296. https://doi.org/10.1016/j.jacc.2017.10.054.

    Article  Google Scholar 

  103. Myerburg RJ, Interian A, Mitrani RM, Kessler KM, Castellanos A. Frequency of sudden cardiac death and profiles of risk. Am J Cardiol. 1997;80(5):10F–9F. https://doi.org/10.1016/S0002-9149(97)00477-3.

    Article  CAS  Google Scholar 

  104. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346(12):877–83. http://content.nejm.org/cgi/content/abstract/346/12/877. https://doi.org/10.1056/NEJMoa013474.

    Article  Google Scholar 

  105. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352(3):225–37. http://content.nejm.org/cgi/content/abstract/352/3/225. https://doi.org/10.1056/NEJMoa043399.

    Article  CAS  Google Scholar 

  106. Hohnloser SH, Kuck KH, Dorian P, et al. Prophylactic use of an implantable cardioverter-defibrillator after acute myocardial infarction. N Engl J Med. 2004;351(24):2481–8. http://content.nejm.org/cgi/content/abstract/351/24/2481. https://doi.org/10.1056/NEJMoa041489.

    Article  CAS  Google Scholar 

  107. Olgin JE, Pletcher MJ, Vittinghoff E, et al. Wearable Cardioverter–Defibrillator after myocardial infarction. N Engl J Med. 2018;379(13):1205–15. https://doi.org/10.1056/NEJMoa1800781.

    Article  Google Scholar 

  108. Golwala H, Bajaj N, Arora G, Arora P. Implantable cardioverter-defibrillator for nonischemic cardiomyopathy: an updated meta-analysis. Circulation (New York, NY). 2017;135(2):201–3. https://www.ncbi.nlm.nih.gov/pubmed/27993908. https://doi.org/10.1161/CIRCULATIONAHA.116.026056.

    Article  Google Scholar 

  109. Koene RJ, Adkisson WO, Benditt DG. Syncope and the risk of sudden cardiac death: evaluation, management, and prevention. J Arrhythmia. 2017;33(6):533–44. https://onlinelibrary.wiley.com/doi/abs/10.1016/j.joa.2017.07.005. https://doi.org/10.1016/j.joa.2017.07.005.

    Article  Google Scholar 

  110. Ruwald MH, Hansen ML, Lamberts M, et al. The relation between age, sex, comorbidity, and pharmacotherapy and the risk of syncope: a Danish Nationwide Study. Europace (London, England). 2012;14(10):1506–14. https://www.ncbi.nlm.nih.gov/pubmed/22588456. https://doi.org/10.1093/europace/eus154.

    Article  Google Scholar 

  111. Soteriades ES, Evans JC, Larson MG, et al. Incidence and prognosis of syncope. N Engl J Med. 2002;347(12):878–85. http://content.nejm.org/cgi/content/abstract/347/12/878. https://doi.org/10.1056/NEJMoa012407.

    Article  Google Scholar 

  112. Nyman JA, Krahn AD, Bland PC, Griffiths S, Manda V. The costs of recurrent syncope of unknown origin in elderly patients. Pacing Clin Electrophysiol. 1999;22(9):1386–94. https://api.istex.fr/ark:/67375/WNG-T03F67DT-J/fulltext.pdf. https://doi.org/10.1111/j.1540-8159.1999.tb00633.x.

    Article  CAS  Google Scholar 

  113. Sun BC, Emond JA, Camargo CA. Direct medical costs of syncope-related hospitalizations in the United States. Am J Cardiol. 2005;95(5):668–71. https://doi.org/10.1016/j.amjcard.2004.11.013.

    Article  Google Scholar 

  114. Ungar A, Mussi C, Del Rosso A, et al. Diagnosis and characteristics of syncope in older patients referred to geriatric departments. J Am Geriatr Soc. 2006;54(10):1531–6. https://api.istex.fr/ark:/67375/WNG-FSMZQ4HN-K/fulltext.pdf. https://doi.org/10.1111/j.1532-5415.2006.00891.x.

    Article  Google Scholar 

  115. D’Ascenzo F, Biondi-Zoccai G, Reed MJ, et al. Incidence, etiology and predictors of adverse outcomes in 43,315 patients presenting to the emergency department with syncope: an international meta-analysis. Int J Cardiol. 2011;167(1):57–62. https://www.clinicalkey.es/playcontent/1-s2.0-S0167527311021401. https://doi.org/10.1016/j.ijcard.2011.11.083.

    Article  Google Scholar 

  116. Kaufmann H, Norcliffe-Kaufmann L, Palma J. Baroreflex dysfunction. N Engl J Med. 2020;382(2):163–78. https://doi.org/10.1056/NEJMra1509723.

    Article  CAS  Google Scholar 

  117. Barochiner J, Alfie J, Aparicio LS, et al. Postprandial hypotension detected through home blood pressure monitoring: a frequent phenomenon in elderly hypertensive patients. Hypertens Res. 2014;37(5):438–43. https://www.ncbi.nlm.nih.gov/pubmed/24108236. https://doi.org/10.1038/hr.2013.144.

    Article  Google Scholar 

  118. Kenny RA. Syncope in the elderly: diagnosis, evaluation, and treatment. J Cardiovasc Electrophysiol. 2003;14(9 Suppl):S74–7. https://www.ncbi.nlm.nih.gov/pubmed/12950524. https://doi.org/10.1046/j.1540-8167.14.s9.8.x.

    Article  Google Scholar 

  119. Bryarly M, Phillips LT, Fu Q, Vernino S, Levine BD. Postural orthostatic Tachycardia Syndrome: JACC focus seminar. J Am Coll Cardiol. 2019;73(10):1207–28. https://www.ncbi.nlm.nih.gov/pubmed/30871704. https://doi.org/10.1016/j.jacc.2018.11.059.

    Article  Google Scholar 

  120. Grubb BP. Neurocardiogenic syncope. N Engl J Med. 2005;352(10):1004–10. http://content.nejm.org/cgi/content/extract/352/10/1004. https://doi.org/10.1056/NEJMcp042601.

    Article  CAS  Google Scholar 

  121. Puggioni E, Guiducci V, Brignole M, et al. Results and complications of the carotid sinus massage performed according to the “method of symptoms”. Am J Cardiol. 2002;89(5):599–601. https://doi.org/10.1016/S0002-9149(01)02303-7.

    Article  Google Scholar 

  122. Kerr SRJ, Pearce MS, Brayne C, Davis RJ, Kenny RA. Carotid sinus hypersensitivity in asymptomatic older persons: implications for diagnosis of syncope and falls. Arch Intern Med (1960). 2006;166(5):515–20. https://doi.org/10.1001/archinte.166.5.515.

    Article  Google Scholar 

  123. Kapoor WN. Evaluation and outcome of patients with syncope. Medicine (Baltimore). 1990;69(3):160–75. https://www.ncbi.nlm.nih.gov/pubmed/2189056. https://doi.org/10.1097/00005792-199005000-00004.

    Article  CAS  Google Scholar 

  124. Quinn JV. Yield of diagnostic tests in evaluating syncopal episodes in older patients—Invited commentary. Arch Intern Med (1960). 2009;169(14):1305–6. https://doi.org/10.1001/archinternmed.2009.203.

    Article  Google Scholar 

  125. Zaidi A, Clough P, Cooper P, Scheepers B, Fitzpatrick AP. Misdiagnosis of epilepsy: many seizure-like attacks have a cardiovascular cause. J Am Coll Cardiol. 2000;36(1):181–4. https://doi.org/10.1016/S0735-1097(00)00700-2.

    Article  CAS  Google Scholar 

  126. Brignole M, Ungar A, Casagranda I, et al. Prospective multicentre systematic guideline-based management of patients referred to the syncope units of general hospitals. Europace (London, England). 2010;12(1):109–18. https://www.ncbi.nlm.nih.gov/pubmed/19948566. https://doi.org/10.1093/europace/eup370.

    Article  Google Scholar 

  127. Ricci F, Fedorowski A, Radico F, et al. Cardiovascular morbidity and mortality related to orthostatic hypotension: a meta-analysis of prospective observational studies. Eur Heart J. 2015;36(25):1609–17. https://www.ncbi.nlm.nih.gov/pubmed/25852216. https://doi.org/10.1093/eurheartj/ehv093.

    Article  Google Scholar 

  128. Calkins H, Shyr Y, Frumin H, Schork A, Morady F. The value of the clinical history in the differentiation of syncope due to ventricular tachycardia, atrioventricular block, and neurocardiogenic syncope. Am J Med. 1995;98(4):365–73. https://doi.org/10.1016/S0002-9343(99)80315-5.

    Article  CAS  Google Scholar 

  129. Brignole M, Moya A, de Lange FJ, et al. 2018 ESC guidelines for the diagnosis and management of syncope. Eur Heart J. 2018;39(21):1883–948. https://www.narcis.nl/publication/RecordID/oai:pure.amc.nl:publications%2F5c0f3843-e414-4a01-8ce6-7b56a0f15f17. https://doi.org/10.1093/eurheartj/ehy037.

    Article  Google Scholar 

  130. Sumiyoshi M, Nakata Y, Mineda Y, et al. Response to head-up tilt testing in patients with situational syncope. Am J Cardiol. 1998;82(9):1117–8. https://doi.org/10.1016/S0002-9149(98)00561-X.

    Article  CAS  Google Scholar 

  131. Sarasin FP, Junod A, Carballo D, Slama S, Unger P, Louis-Simonet M. Role of echocardiography in the evaluation of syncope: a prospective study. Heart. 2002;88(4):363–7. https://doi.org/10.1136/heart.88.4.363.

    Article  CAS  Google Scholar 

  132. Van Dijk N, Boer KR, Colman N, et al. High diagnostic yield and accuracy of history, physical examination, and ECG in patients with transient loss of consciousness in FAST: the fainting assessment study. J Cardiovasc Electrophysiol. 2008;19(1):48–55. https://api.istex.fr/ark:/67375/WNG-XJ7GFVVL-S/fulltext.pdf. https://doi.org/10.1111/j.1540-8167.2007.00984.x.

    Article  Google Scholar 

  133. More D, O’Brien K, Shaw J. Arrhythmogenic right ventricular dysplasia in the elderly. Pacing Clin Electrophysiol. 2002;25(8):1266–9. https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1460-9592.2002.01266.x. https://doi.org/10.1046/j.1460-9592.2002.01266.x.

    Article  Google Scholar 

  134. Sivakumaran S, Krahn AD, Klein GJ, et al. A prospective randomized comparison of loop recorders versus Holter monitors in patients with syncope or presyncope. Am J Med. 2003;115(1):1–5. https://doi.org/10.1016/S0002-9343(03)00233-X.

    Article  Google Scholar 

  135. Shen W, Sheldon RS, Benditt DG, et al. 2017 ACC/AHA/HRS guideline for the evaluation and management of patients with syncope: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines, and the Heart Rhythm Society. Heart Rhythm. 2017;14(8):e155–217. https://www.ncbi.nlm.nih.gov/pubmed/28286247. https://doi.org/10.1016/j.hrthm.2017.03.004.

    Article  Google Scholar 

  136. Gatzoulis KA, Karystinos G, Gialernios T, et al. Correlation of noninvasive electrocardiography with invasive electrophysiology in syncope of unknown origin: implications from a large syncope database. Ann Noninvasive Electrocardiol. 2009;14(2):119–27. http://www.ingentaconnect.com/content/bsc/anec/2009/00000014/00000002/art00003. https://doi.org/10.1111/j.1542-474X.2009.00286.x.

    Article  Google Scholar 

  137. Svennberg E, Engdahl J, Al-Khalili F, Friberg L, Frykman V, Rosenqvist M. Mass screening for untreated atrial fibrillation: the STROKESTOP Study. Circulation (New York, NY). 2015;131(25):2176–84. https://www.ncbi.nlm.nih.gov/pubmed/25910800. https://doi.org/10.1161/CIRCULATIONAHA.114.014343.

    Article  Google Scholar 

  138. Perez MV, Mahaffey KW, Hedlin H, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl J Med. 2019;381(20):1909–17. https://doi.org/10.1056/NEJMoa1901183.

    Article  Google Scholar 

  139. Bumgarner JM, Lambert CT, Hussein AA, et al. Smartwatch algorithm for Automated Detection of atrial fibrillation. J Am Coll Cardiol. 2018;71(21):2381–8. https://doi.org/10.1016/j.jacc.2018.03.003.

    Article  Google Scholar 

  140. Sanna T, Diener H, Passman RS, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370(26):2478–86. https://doi.org/10.1056/NEJMoa1313600.

    Article  CAS  Google Scholar 

  141. Hinicks G, Potpara T, Dagres N, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021;42(5):373–498. https://www.narcis.nl/publication/RecordID/oai:pure.rug.nl:publications%2F3317b4ce-3ccc-4eb2-afb1-abd471c1daca. https://doi.org/10.1093/eurheartj/ehaa612.

    Article  Google Scholar 

  142. Ganesan AN, Chew DP, Hartshorne T, et al. The impact of atrial fibrillation type on the risk of thromboembolism, mortality, and bleeding: a systematic review and meta-analysis. Eur Heart J. 2016;37(20):1591–602. https://www.ncbi.nlm.nih.gov/pubmed/26888184. https://doi.org/10.1093/eurheartj/ehw007.

    Article  Google Scholar 

  143. Lip GYH, Nieuwlaat R, Pisters R, Lane DA, Crijns HJGM. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach the Euro Heart Survey on atrial fibrillation. Chest. 2010;137(2):263–72. https://www.narcis.nl/publication/RecordID/oai:cris.maastrichtuniversity.nl:publications%2F23809ce3-ed44-4fdb-88be-b83946b1f602. https://doi.org/10.1378/chest.09-1584.

    Article  Google Scholar 

  144. Blackshear JL, Halperin JL, Hart RG, Laupacis A. Adjusted-dose warfarin versus low-intensity, fixed-dose warfarin plus aspirin for high-risk patients with atrial fibrillation. The Lancet (British edition). 1996;348(9028):633. https://search.proquest.com/docview/198969540

    Google Scholar 

  145. EAFT (European Atrial Fibrillation Trial) Study Group. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. The Lancet (British edition). 1993;342(8882):1255–62. https://doi.org/10.1016/0140-6736(93)92358-Z.

    Article  Google Scholar 

  146. Granger CB, Alexander JH, McMurray JJV, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92. https://doi.org/10.1056/NEJMoa1107039.

    Article  CAS  Google Scholar 

  147. Niessner A, Rose A, Rosenstein R, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(24):2333–5. https://doi.org/10.1056/NEJMc1112233.

    Article  CAS  Google Scholar 

  148. Houston DS, Zarychanski R, Tomoda H, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(27):2671–5. http://content.nejm.org/cgi/content/extract/361/27/2671. https://doi.org/10.1056/NEJMc0909962.

    Article  CAS  Google Scholar 

  149. Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104. https://doi.org/10.1056/NEJMoa1310907.

    Article  CAS  Google Scholar 

  150. Eikelboom JW, Connolly SJ, Brueckmann M, et al. Dabigatran versus warfarin in patients with mechanical heart valves. N Engl J Med. 2013;369(13):1206–14. https://doi.org/10.1056/NEJMoa1300615.

    Article  CAS  Google Scholar 

  151. Rash A, Downes T, Portner R, Yeo WW, Morgan N, Channer KS. A randomised controlled trial of warfarin versus aspirin for stroke prevention in octogenarians with atrial fibrillation (WASPO). Age Ageing. 2007;36(2):151–6. https://api.istex.fr/ark:/67375/HXZ-GQMDGZ50-D/fulltext.pdf. https://doi.org/10.1093/ageing/afl129.

    Article  Google Scholar 

  152. Mant J, Hobbs FR, Fletcher K, et al. Warfarin versus aspirin for stroke prevention in an elderly community population with atrial fibrillation (the Birmingham Atrial Fibrillation Treatment of the Aged Study, BAFTA): a randomised controlled trial. The Lancet (British edition). 2007;370(9586):493–503. https://www.clinicalkey.es/playcontent/1-s2.0-S0140673607612331. https://doi.org/10.1016/S0140-6736(07)61233-1.

    Article  CAS  Google Scholar 

  153. Chao T, Liu C, Lin Y, et al. Oral anticoagulation in very elderly patients with atrial fibrillation: a nationwide cohort study. Circulation (New York, NY). 2018;138(1):37–47. https://www.ncbi.nlm.nih.gov/pubmed/29490992. https://doi.org/10.1161/CIRCULATIONAHA.117.031658.

    Article  Google Scholar 

  154. Halvorsen S, Atar D, Yang H, et al. Efficacy and safety of apixaban compared with warfarin according to age for stroke prevention in atrial fibrillation: observations from the ARISTOTLE trial. Eur Heart J. 2014;35(28):1864–72. https://www.ncbi.nlm.nih.gov/pubmed/24561548. https://doi.org/10.1093/eurheartj/ehu046.

    Article  CAS  Google Scholar 

  155. Halperin JL, Hankey GJ, Paolini JF, et al. Efficacy and safety of rivaroxaban compared with warfarin among elderly patients with nonvalvular atrial fibrillation in the rivaroxaban once daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation (ROCKET AF). Circulation (New York, NY). 2014;130(2):138–46. https://www.ncbi.nlm.nih.gov/pubmed/24895454. https://doi.org/10.1161/CIRCULATIONAHA.113.005008.

    Article  CAS  Google Scholar 

  156. Själander S, Själander A, Svensson PJ, Friberg L. Atrial fibrillation patients do not benefit from acetylsalicylic acid. Europace (London, England). 2014;16(5):631–8. https://www.ncbi.nlm.nih.gov/pubmed/24158253. https://doi.org/10.1093/europace/eut333.

    Article  Google Scholar 

  157. Fumagalli S, Said SAM, Laroche C, et al. Age-related differences in presentation, treatment, and outcome of patients with Atrial fibrillation in Europe: The EORP-AF general pilot registry (EURObservational Research programme-atrial fibrillation). JACC Clin Electrophysiol. 2015;1(4):326–34. https://www.ncbi.nlm.nih.gov/pubmed/29759321. https://doi.org/10.1016/j.jacep.2015.02.019.

    Article  Google Scholar 

  158. Reddy VY, Doshi SK, Sievert H, et al. Percutaneous left atrial appendage closure for stroke prophylaxis in patients with atrial fibrillation: 2.3-year follow-up of the PROTECT AF (watchman left atrial appendage system for embolic protection in patients with atrial fibrillation) trial. Circulation (New York, NY). 2013;127(6):720–9. https://www.ncbi.nlm.nih.gov/pubmed/23325525. https://doi.org/10.1161/CIRCULATIONAHA.112.114389.

    Article  Google Scholar 

  159. Belgaid DR, Khan Z, Zaidi M, Hobbs A. Prospective randomized evaluation of the watchman left atrial appendage closure device in patients with atrial fibrillation versus long-term warfarin therapy: the PREVAIL trial. Int J Cardiol. 2016;219:177–9. https://www.ncbi.nlm.nih.gov/pubmed/27343417. https://doi.org/10.1016/j.ijcard.2016.06.041.

    Article  Google Scholar 

  160. Holmes J, David R, Doshi SK, Kar S, et al. Left atrial appendage closure as an alternative to warfarin for stroke prevention in atrial fibrillation: a patient-level meta-analysis. J Am Coll Cardiol. 2015;65(24):2614–23. https://www.ncbi.nlm.nih.gov/pubmed/26088300. https://doi.org/10.1016/j.jacc.2015.04.025.

    Article  Google Scholar 

  161. Dukkipati S, Kar S, Holmes D, et al. Device-related thrombus after left atrial appendage closure: incidence, predictors, and outcomes. Circulation (New York, NY). 2018;138(9):874–85. https://www.ncbi.nlm.nih.gov/pubmed/29752398. https://doi.org/10.1161/CIRCULATIONAHA.118.035090.

    Article  Google Scholar 

  162. Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med. 1991;324(12):781–8. http://content.nejm.org/cgi/content/abstract/324/12/781. https://doi.org/10.1056/NEJM199103213241201.

    Article  CAS  Google Scholar 

  163. Zemrak F, Ambale-Venkatesh B, Captur G, et al. Left atrial structure in relationship to age, sex, ethnicity, and cardiovascular risk factors: MESA (multi-ethnic study of atherosclerosis). Circ Cardiovasc Imaging. 2017;10(2) https://www.ncbi.nlm.nih.gov/pubmed/28196797 https://doi.org/10.1161/CIRCIMAGING.116.005379.

  164. Paciullo F, Proietti M, Bianconi V, et al. Choice and outcomes of rate control versus rhythm control in elderly patients with atrial fibrillation: a report from the REPOSI study. Drugs Aging. 2018;35(4):365–73. https://www.ncbi.nlm.nih.gov/pubmed/29564755. https://doi.org/10.1007/s40266-018-0532-8.

    Article  CAS  Google Scholar 

  165. Shariff N, Desai RV, Patel K, et al. Rate-control versus rhythm-control strategies and outcomes in septuagenarians with atrial fibrillation. Am J Med. 2013;126(10):887–93. https://www.clinicalkey.es/playcontent/1-s2.0-S0002934313004993. https://doi.org/10.1016/j.amjmed.2013.04.021.

    Article  Google Scholar 

  166. Purmah Y, Proietti M, Laroche C, et al. Rate vs. rhythm control and adverse outcomes among European patients with atrial fibrillation. Europace (London, England). 2018;20(2):243–52. https://www.ncbi.nlm.nih.gov/pubmed/28160483. https://doi.org/10.1093/europace/euw421.

    Article  Google Scholar 

  167. Essebag V, Hadjis T, Platt RW, Pilote L. Amiodarone and the risk of bradyarrhythmia requiring permanent pacemaker in elderly patients with atrial fibrillation and prior myocardial infarction. J Am Coll Cardiol. 2003;41(2):249–54. https://doi.org/10.1016/S0735-1097(02)02709-2.

    Article  CAS  Google Scholar 

  168. Abdin A, Yalin K, Lyan E, et al. Safety and efficacy of cryoballoon ablation for the treatment of atrial fibrillation in elderly patients. Clin Res Cardiol. 2019;108(2):167–74. https://www.ncbi.nlm.nih.gov/pubmed/30187178. https://doi.org/10.1007/s00392-018-1336-x.

    Article  Google Scholar 

  169. Heeger C, Bellmann B, Fink T, et al. Efficacy and safety of cryoballoon ablation in the elderly: a multicenter study. Int J Cardiol. 2019;278:108–13. https://doi.org/10.1016/j.ijcard.2018.09.090.

    Article  Google Scholar 

  170. Metzner I, Wissner E, Tilz RR, et al. Ablation of atrial fibrillation in patients >/=75 years: long-term clinical outcome and safety. Europace (London, England). 2016;18(4):543–9. https://www.ncbi.nlm.nih.gov/pubmed/26826139. https://doi.org/10.1093/europace/euv229.

    Article  Google Scholar 

  171. Bulava A, Hanis J, Dusek L. Clinical outcomes of radiofrequency catheter ablation of atrial fibrillation in octogenarians-10-year experience of a one high-volume center. J Geriatr Cardiol. 2017;14(9):575–81. https://www.ncbi.nlm.nih.gov/pubmed/29056956. https://doi.org/10.11909/j.issn.1671-5411.2017.09.007.

    Article  Google Scholar 

  172. Calkins H, Hinicks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: Executive summary. Europace (London, England). 2018;20(1):157–208. https://www.narcis.nl/publication/RecordID/oai:repub.eur.nl:104197. https://doi.org/10.1093/europace/eux275.

    Article  Google Scholar 

  173. Langberg JJ, Calkins H, Kim Y, et al. Recurrence of conduction in accessory atrioventricular connections after initially successful radiofrequency catheter ablation. J Am Coll Cardiol. 1992;19(7):1588–92. https://doi.org/10.1016/0735-1097(92)90622-T.

    Article  CAS  Google Scholar 

  174. Kornej J, Hindricks G, Kosiuk J, et al. Renal dysfunction, stroke risk scores (CHADS2, CHA2DS2-VASc, and R2CHADS2), and the risk of thromboembolic events after catheter ablation of atrial fibrillation: The Leipzig Heart Center AF Ablation Registry. Circ Arrhythm Electrophysiol. 2013;6(5):868–74. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=01337493-201310000-00008. https://doi.org/10.1161/CIRCEP.113.000869.

    Article  Google Scholar 

  175. Saad E, dʼAvila A, Costa I, et al. Very low risk of thromboembolic events in patients undergoing successful catheter ablation of atrial fibrillation with a CHADS2 score ≤3: a long-term outcome study. Circ Arrhythm Electrophysiol. 2011;4(5):615–21. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=01337493-201110000-00005. https://doi.org/10.1161/CIRCEP.111.963231.

    Article  Google Scholar 

  176. Kosiuk J, Kornej J, Bollmann A, et al. Early cerebral thromboembolic complications after radiofrequency catheter ablation of atrial fibrillation: incidence, characteristics, and risk factors. Heart Rhythm. 2014;11(11):1934–40. https://www.clinicalkey.es/playcontent/1-s2.0-S1547527114008121. https://doi.org/10.1016/j.hrthm.2014.07.039.

    Article  Google Scholar 

  177. Calkins H, Epstein A, Packer D, et al. Catheter ablation of ventricular tachycardia in patients with structural heart disease using cooled radiofrequency energy: results of a prospective multicenter study. J Am Coll Cardiol. 2000;35(7):1905–14. http://content.onlinejacc.org/cgi/content/abstract/35/7/1905

    Article  CAS  Google Scholar 

  178. Mandawat A, Curtis JP, Mandawat A, Njike VY, Lampert R. Safety of pacemaker implantation in nonagenarians an analysis of the healthcare cost and utilization Project―Nationwide inpatient sample. Circulation (New York, NY). 2013;127(14):1453–65. https://www.ncbi.nlm.nih.gov/pubmed/23513066. https://doi.org/10.1161/CIRCULATIONAHA.113.001434.

    Article  Google Scholar 

  179. Geelen P, Lorga Filho A, Primo J, Wellens F, Brugada P. Experience with implantable cardioverter defibrillator therapy in elderly patients. Eur Heart J. 1997;18(8):1339–42. https://api.istex.fr/ark:/67375/HXZ-VRMC5JPL-K/fulltext.pdf. https://doi.org/10.1093/oxfordjournals.eurheartj.a015447.

    Article  CAS  Google Scholar 

  180. Armaganijan LV, Toff WD, Nielsen JC, et al. Are elderly patients at increased risk of complications following pacemaker implantation? A meta-analysis of randomized trials. Pacing Clin Electrophysiol. 2012;35(2):131–4. https://api.istex.fr/ark:/67375/WNG-QWZ3B0MM-X/fulltext.pdf. https://doi.org/10.1111/j.1540-8159.2011.03240.x.

    Article  Google Scholar 

  181. Tsai V, Goldstein MK, Hsia HH, Wang Y, Curtis J, Heidenreich PA. Influence of age on perioperative complications among patients undergoing implantable cardioverter-defibrillators for primary prevention in the United States. Circ Cardiovasc Qual Outcomes. 2011;4(5):549–56. https://www.ncbi.nlm.nih.gov/pubmed/21878667. https://doi.org/10.1161/CIRCOUTCOMES.110.959205.

    Article  Google Scholar 

  182. Kirkfeldt RE, Johansen JB, Nohr EA, Jørgensen OD, Nielsen JC. Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark. Eur Heart J. 2014;35(18):1186–94. https://www.ncbi.nlm.nih.gov/pubmed/24347317. https://doi.org/10.1093/eurheartj/eht511.

    Article  Google Scholar 

  183. Healey JS, Hallstrom AP, Kuck K, et al. Role of the implantable defibrillator among elderly patients with a history of life-threatening ventricular arrhythmias. Eur Heart J. 2007;28(14):1746–9. https://www.ncbi.nlm.nih.gov/pubmed/17283003. https://doi.org/10.1093/eurheartj/ehl438.

    Article  Google Scholar 

  184. Yung D, Birnie D, Dorian P, et al. Survival after implantable cardioverter-defibrillator implantation in the elderly. Circulation (New York, NY). 2013;127(24):2383–92. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003017-201306180-00008. https://doi.org/10.1161/CIRCULATIONAHA.113.001442.

    Article  Google Scholar 

  185. Køber L, Thune JJ, Nielsen JC, et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med. 2016;375(13):1221–30. https://doi.org/10.1056/NEJMoa1608029.

    Article  Google Scholar 

  186. Lampert R. Quality of life and end-of-life issues for older patients with implanted cardiac rhythm devices. Clin Geriatr Med. 2012;28(4):693–702. https://www.clinicalkey.es/playcontent/1-s2.0-S0749069012000730. https://doi.org/10.1016/j.cger.2012.07.005.

    Article  Google Scholar 

  187. Lampert R, Hayes DL, Annas GJ, et al. HRS expert consensus statement on the management of cardiovascular implantable electronic devices (CIEDs) in patients nearing end of life or requesting withdrawal of therapy. Heart Rhythm. 2010;7(7):1008–26. https://www.clinicalkey.es/playcontent/1-s2.0-S154752711000408X. https://doi.org/10.1016/j.hrthm.2010.04.033.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh Calkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wallace, R., Calkins, H. (2023). Arrhythmia Management in the Elderly. In: Leucker, T.M., Gerstenblith, G. (eds) Cardiovascular Disease in the Elderly. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-16594-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16594-8_6

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-16593-1

  • Online ISBN: 978-3-031-16594-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation