Peripheral Artery Disease (PAD)

  • Chapter
  • First Online:
Cardiovascular Disease in the Elderly

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 690 Accesses

Abstract

Peripheral artery disease affects over 200 million people worldwide, with an increase in prevalence as people age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 103.99
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 145.59
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382(9901):1329–40. https://doi.org/10.1016/S0140-6736(13)61249-0.

    Article  Google Scholar 

  2. Aburahma A, Bergan JJ. Noninvasive peripheral arterial diagnosis.

    Google Scholar 

  3. Ohman EM, Bhatt DL, Steg PG, Goto S, Hirsch AT, Liau CS, Mas JL, Richard AJ, Röther J, Wilson PW, REACH Registry Investigators. The REduction of Atherothrombosis for Continued Health (REACH) Registry: an international, prospective, observational investigation in subjects at risk for atherothrombotic events-study design. Am Heart J. 2006;151(4):786.e1–10. https://doi.org/10.1016/j.ahj.2005.11.004.

    Article  Google Scholar 

  4. Khan NA, Rahim SA, Anand SS, Simel DL, Panju A. Does the clinical examination predict lower extremity peripheral arterial disease? JAMA. 2006;295(5):536–46. https://doi.org/10.1001/jama.295.5.536.

    Article  CAS  Google Scholar 

  5. Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, et al. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation. 2012;126(24):2890–909. https://doi.org/10.1161/CIR.0b013e318276fbcb.

    Article  Google Scholar 

  6. Kithcart AP, Beckman JA. ACC/AHA versus ESC Guidelines for diagnosis and management of peripheral artery disease: JACC Guideline Comparison.

    Google Scholar 

  7. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;135(12):e686–725. https://doi.org/10.1161/CIR.0000000000000470.

    Article  Google Scholar 

  8. Martinelli O, Alunno A, Drudi FM, Malaj A, Irace L. Duplex ultrasound versus CT angiography for the treatment planning of lower-limb arterial disease. J Ultrasound. 2020; https://doi.org/10.1007/s40477-020-00534-y.

  9. Burbelko M, Augsten M, Kalinowski MO, Heverhagen JT. Comparison of contrast-enhanced multi-station MR angiography and digital subtraction angiography of the lower extremity arterial disease. J Magn Reson Imaging. 2013;37(6):1427–35. https://doi.org/10.1002/jmri.23944.

    Article  Google Scholar 

  10. Shareghi S, Gopal A, Gul K, Matchinson JC, Wong CB, Weinberg N, et al. Diagnostic accuracy of 64 multidetector computed tomographic angiography in peripheral vascular disease. Catheter Cardiovasc Interv. 2010;75(1):23–31. https://doi.org/10.1002/ccd.22228.

    Article  Google Scholar 

  11. Willigendael EM, Tei**k JA, Bartelink ML, Kuiken BW, Boiten J, Moll FL, et al. Influence of smoking on incidence and prevalence of peripheral arterial disease. J Vasc Surg. 2004;40(6):1158–65. https://doi.org/10.1016/j.jvs.2004.08.049.

    Article  Google Scholar 

  12. Joosten MM, Pai JK, Bertoia ML, Rimm EB, Spiegelman D, Mittleman MA, et al. Associations between conventional cardiovascular risk factors and risk of peripheral artery disease in men. JAMA. 2012;308(16):1660–7. https://doi.org/10.1001/jama.2012.13415.

    Article  CAS  Google Scholar 

  13. Hennrikus D, Joseph AM, Lando HA, Duval S, Ukestad L, Kodl M, et al. Effectiveness of a smoking cessation program for peripheral artery disease patients: a randomized controlled trial. J Am Coll Cardiol. 2010;56(25):2105–12. https://doi.org/10.1016/j.jacc.2010.07.031.

    Article  Google Scholar 

  14. Kawachi I, Colditz GA, Stampfer MJ, Willett WC, Manson JE, Rosner B, et al. Smoking cessation and time course of decreased risks of coronary heart disease in middle-aged women. Arch Intern Med. 1994;154(2):169–75.

    Article  CAS  Google Scholar 

  15. Kawachi I, Colditz GA, Stampfer MJ, Willett WC, Manson JE, Rosner B, et al. Smoking cessation and decreased risk of stroke in women. JAMA. 1993;269(2):232–6.

    Article  CAS  Google Scholar 

  16. Fakhry F, van de Luijtgaarden KM, Bax L, den Hoed PT, Hunink MG, Rouwet EV, et al. Supervised walking therapy in patients with intermittent claudication. J Vasc Surg. 2012;56(4):1132–42. https://doi.org/10.1016/j.jvs.2012.04.046.

    Article  Google Scholar 

  17. Biswas MP, Capell WH, McDermott MM, Jacobs DL, Beckman JA, Bonaca MP, et al. Exercise training and revascularization in the management of symptomatic peripheral artery disease. JACC Basic Transl Sci. 2021;6(2):174–88. https://doi.org/10.1016/j.jacbts.2020.08.012.

    Article  Google Scholar 

  18. Antithrombotic Trialists Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324(7329):71–86. https://doi.org/10.1136/bmj.324.7329.71.

    Article  Google Scholar 

  19. Critical Leg Ischaemia Prevention Study Group, Catalano M, Born G, Peto R. Prevention of serious vascular events by aspirin amongst patients with peripheral arterial disease: randomized, double-blind trial. J Intern Med. 2007;261(3):276–84. https://doi.org/10.1111/j.1365-2796.2006.01763.x.

    Article  CAS  Google Scholar 

  20. Belch J, MacCuish A, Campbell I, Cobbe S, Taylor R, Prescott R, et al. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ. 2008;337:a1840. https://doi.org/10.1136/bmj.a1840.

    Article  Google Scholar 

  21. Fowkes FG, Price JF, Stewart MC, Butcher I, Leng GC, Pell AC, et al. Aspirin for prevention of cardiovascular events in a general population screened for a low ankle brachial index: a randomized controlled trial. JAMA. 2010;303(9):841–8. https://doi.org/10.1001/jama.2010.221.

    Article  CAS  Google Scholar 

  22. Bedenis R, Stewart M, Cleanthis M, Robless P, Mikhailidis DP, Stansby G. Cilostazol for intermittent claudication. Cochrane Database Syst Rev. 2014;(10):CD003748. https://doi.org/10.1002/14651858.CD003748.pub4.

  23. CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee. Lancet. 1996;348(9038):1329–39. https://doi.org/10.1016/s0140-6736(96)09457-3.

    Article  Google Scholar 

  24. Sattur S. Chapter 5 – Peripheral arterial disease – a different kind of arterial disease? The role of antiplatelet therapy in the prevention and treatment of limb ischemia. In: Brener SJ, editor. Dual antiplatelet therapy for coronary and peripheral arterial disease. San Diego: Academic; 2021.

    Google Scholar 

  25. Hiatt WR, Fowkes FG, Heizer G, Berger JS, Baumgartner I, Held P, et al. Ticagrelor versus clopidogrel in symptomatic peripheral artery disease. N Engl J Med. 2017;376(1):32–40. https://doi.org/10.1056/NEJMoa1611688.

    Article  CAS  Google Scholar 

  26. Bhatt DL, Flather MD, Hacke W, Berger PB, Black HR, Boden WE, et al. Patients with prior myocardial infarction, stroke, or symptomatic peripheral arterial disease in the CHARISMA trial. J Am Coll Cardiol. 2007;49(19):1982–8. https://doi.org/10.1016/j.jacc.2007.03.025.

    Article  Google Scholar 

  27. Anand SS, Bosch J, Eikelboom JW, Connolly SJ, Diaz R, Widimsky P, et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391(10117):219–29. https://doi.org/10.1016/S0140-6736(17)32409-1.

    Article  CAS  Google Scholar 

  28. Bonaca MP, Bauersachs RM, Anand SS, Debus ES, Nehler MR, Patel MR, et al. Rivaroxaban in peripheral artery disease after revascularization. N Engl J Med. 2020;382(21):1994–2004. https://doi.org/10.1056/NEJMoa2000052.

    Article  CAS  Google Scholar 

  29. Kumbhani DJ, Steg PG, Cannon CP, Eagle KA, Smith SC Jr, Goto S, et al. Statin therapy and long-term adverse limb outcomes in patients with peripheral artery disease: insights from the REACH registry. Eur Heart J. 2014;35(41):2864–72. https://doi.org/10.1093/eurheartj/ehu080.

    Article  CAS  Google Scholar 

  30. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22. https://doi.org/10.1056/NEJMoa1615664.

    Article  CAS  Google Scholar 

  31. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379(22):2097–107. https://doi.org/10.1056/NEJMoa1801174.

    Article  CAS  Google Scholar 

  32. Bonaca MP, Nault P, Giugliano RP, Keech AC, Pineda AL, Kanevsky E, et al. Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease: insights from the FOURIER Trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk). Circulation. 2018;137(4):338–50. https://doi.org/10.1161/CIRCULATIONAHA.117.032235.

    Article  CAS  Google Scholar 

  33. Cull DL, Langan EM, Gray BH, Johnson B, Taylor SM. Open versus endovascular intervention for critical limb ischemia: a population-based study. J Am Coll Surg. 2010;210(5):555–61, 61–3. https://doi.org/10.1016/j.jamcollsurg.2009.12.019.

    Article  Google Scholar 

  34. Malgor RD, Alahdab F, Elraiyah TA, Rizvi AZ, Lane MA, Prokop LJ, et al. A systematic review of treatment of intermittent claudication in the lower extremities. J Vasc Surg. 2015;61(3 Suppl):54S–73S. https://doi.org/10.1016/j.jvs.2014.12.007.

    Article  Google Scholar 

  35. Society for Vascular Surgery Lower Extremity Guidelines Writing Group, Conte MS, Pomposelli FB, Clair DG, Geraghty PJ, McKinsey JF, et al. Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J Vasc Surg. 2015;61(3 Suppl):2S–41S. https://doi.org/10.1016/j.jvs.2014.12.009.

    Article  Google Scholar 

  36. Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. Eur J Vasc Endovasc Surg. 2019;58(1S):S1–S109.e33. https://doi.org/10.1016/j.ejvs.2019.05.006.

    Article  Google Scholar 

  37. Ambler GK, Twine CP. Graft type for femoro-popliteal bypass surgery. Cochrane Database Syst Rev. 2018;2:CD001487. https://doi.org/10.1002/14651858.CD001487.pub3.

    Article  Google Scholar 

  38. Nordanstig J, Taft C, Hensater M, Perlander A, Osterberg K, Jivegard L. Improved quality of life after 1 year with an invasive versus a noninvasive treatment strategy in claudicants: one-year results of the Invasive Revascularization or Not in Intermittent Claudication (IRONIC) Trial. Circulation. 2014;130(12):939–47. https://doi.org/10.1161/CIRCULATIONAHA.114.009867.

    Article  CAS  Google Scholar 

  39. Djerf H, Millinger J, Falkenberg M, Jivegard L, Svensson M, Nordanstig J. Absence of long-term benefit of revascularization in patients with intermittent claudication: five-year results from the IRONIC randomized controlled trial. Circ Cardiovasc Interv. 2020;13(1):e008450. https://doi.org/10.1161/CIRCINTERVENTIONS.119.008450.

    Article  Google Scholar 

  40. Saraidaridis JT, Ergul EA, Clouse WD, Patel VI, Cambria RP, Conrad MF. The natural history and outcomes of endovascular therapy for claudication. Ann Vasc Surg. 2017;44:34–40. https://doi.org/10.1016/j.avsg.2017.04.021.

    Article  Google Scholar 

  41. Greenhalgh RM, Belch JJ, Brown LC, Gaines PA, Gao L, Reise JA, et al. The adjuvant benefit of angioplasty in patients with mild to moderate intermittent claudication (MIMIC) managed by supervised exercise, smoking cessation advice and best medical therapy: results from two randomised trials for stenotic femoropopliteal and aortoiliac arterial disease. Eur J Vasc Endovasc Surg. 2008;36(6):680–8. https://doi.org/10.1016/j.ejvs.2008.10.007.

    Article  CAS  Google Scholar 

  42. Sachar R, Soga Y, Ansari MM, Kozuki A, Lopez L, Brodmann M, et al. 1-Year results from the RANGER II SFA randomized trial of the Ranger drug-coated balloon. JACC Cardiovasc Interv. 2021;14(10):1123–33. https://doi.org/10.1016/j.jcin.2021.03.021.

    Article  Google Scholar 

  43. Yamamoto Y, Kawarada O, Ando H, Anzai H, Zen K, Tamura K, et al. Effects of high-speed rotational atherectomy in peripheral artery disease patients with calcified lesions: a retrospective multicenter registry. Cardiovasc Interv Ther. 2020;35(4):393–7. https://doi.org/10.1007/s12928-020-00643-9.

    Article  CAS  Google Scholar 

  44. Adams G, Shammas N, Mangalmurti S, Bernardo NL, Miller WE, Soukas PA, et al. Intravascular lithotripsy for treatment of calcified lower extremity arterial stenosis: initial analysis of the Disrupt PAD III study. J Endovasc Ther. 2020;27(3):473–80. https://doi.org/10.1177/1526602820914598.

    Article  Google Scholar 

  45. Brodmann M, Werner M, Holden A, Tepe G, Scheinert D, Schwindt A, et al. Primary outcomes and mechanism of action of intravascular lithotripsy in calcified, femoropopliteal lesions: results of Disrupt PAD II. Catheter Cardiovasc Interv. 2019;93(2):335–42. https://doi.org/10.1002/ccd.27943.

    Article  Google Scholar 

  46. Makowsky MJ, McAlister FA, Galbraith PD, Southern DA, Ghali WA, Knudtson ML, Tsuyuki RT, Alberta Provincial Program for Outcome Assessment in Coronary Heart Disease (APPROACH) Investigators. Lower extremity peripheral arterial disease in individuals with coronary artery disease: prognostic importance, care gaps, and impact of therapy. Am Heart J. 2008;155(2):348–55. https://doi.org/10.1016/j.ahj.2007.09.005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthews Chacko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cluckey, A., Dahm, C.N., Chacko, M. (2023). Peripheral Artery Disease (PAD). In: Leucker, T.M., Gerstenblith, G. (eds) Cardiovascular Disease in the Elderly. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-16594-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16594-8_5

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-16593-1

  • Online ISBN: 978-3-031-16594-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation