Bayesian Dense Inverse Searching Algorithm for Real-Time Stereo Matching in Minimally Invasive Surgery

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13437))

Abstract

This paper reports a CPU-level real-time stereo matching method for surgical images (10 Hz on \(640 \times 480\) image with a single core of i5-9400). The proposed method is built on the fast LK algorithm, which estimates the disparity of the stereo images patch-wisely and in a coarse-to-fine manner. We propose a Bayesian framework to evaluate the probability of the optimized patch disparity at different scales. Moreover, we introduce a spatial Gaussian mixed probability distribution to address the pixel-wise probability within the patch. In-vivo and synthetic experiments show that our method can handle ambiguities resulted from the textureless surfaces and the photometric inconsistency caused by the non-Lambertian reflectance. Our Bayesian method correctly balances the probability of the patch for stereo images at different scales. Experiments indicate that the estimated depth has similar accuracy and fewer outliers than the baseline methods in the surgical scenario with real-time performance. The code and data set are available at https://github.com/**gweiSong/BDIS.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Readers are encouraged to watch the attached video and test the code.

  2. 2.

    https://unity.com/.

References

  1. Allan, M., et al.: Stereo correspondence and reconstruction of endoscopic data challenge. ar**v preprint ar**v:2101.01133 (2021)

  2. Andrew, A.M.: Multiple view geometry in computer vision. Kybernetes (2001)

    Google Scholar 

  3. Brandao, P., Psychogyios, D., Mazomenos, E., Stoyanov, D., Janatka, M.: HAPNet: hierarchically aggregated pyramid network for real-time stereo matching. Comput. Methods Biomech. Biomed. Eng. Imaging Visual. 1–6 (2020)

    Google Scholar 

  4. Cartucho, J., Tukra, S., Li, Y.S. Elson, D., Giannarou, S.: VisionBlender: a tool to efficiently generate computer vision datasets for robotic surgery. Comput. Methods Biomech. Biomed. Eng. Imaging Visual. 1–8 (2020)

    Google Scholar 

  5. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5418 (2018)

    Google Scholar 

  6. Chen, X., Wang, Y., Chen, X., Zeng, W.: S2R-DepthNet: learning a generalizable depth-specific structural representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3034–3043 (2021)

    Google Scholar 

  7. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2017)

    Article  Google Scholar 

  8. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19315-6_3

    Chapter  Google Scholar 

  9. Giannarou, S., Visentini-Scarzanella, M., Yang, G.Z.: Probabilistic tracking of affine-invariant anisotropic regions. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 130–143 (2013)

    Article  Google Scholar 

  10. Guo, X., Yang, K., Yang, W., Wang, X., Li, H.: Group-wise correlation stereo network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3273–3282 (2019)

    Google Scholar 

  11. Haouchine, N., Dequidt, J., Peterlik, I., Kerrien, E., Berger, M.O., Cotin, S.: Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery. In: 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 199–208. IEEE (2013)

    Google Scholar 

  12. Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 807–814. IEEE (2005)

    Google Scholar 

  13. Jia, X., et al.: Automatic polyp recognition in colonoscopy images using deep learning and two-stage pyramidal feature prediction. IEEE Trans. Autom. Sci. Eng. 17(3), 1570–1584 (2020)

    Google Scholar 

  14. Kroeger, T., Timofte, R., Dai, D., Van Gool, L.: Fast optical flow using dense inverse search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 471–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_29

    Chapter  Google Scholar 

  15. Larochelle, H., Bengio, Y.: Classification using discriminative restricted boltzmann machines, pp. 536–543 (2008)

    Google Scholar 

  16. Long, Y., et al.: E-DSSR: efficient dynamic surgical scene reconstruction with transformer-based stereoscopic depth perception. ar**v preprint ar**v:2107.00229 (2021)

  17. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. Vancouver, British Columbia (1981)

    Google Scholar 

  18. Mahmood, F., Yang, Z., Chen, R., Borders, D., Xu, W., Durr, N.J.: Polyp segmentation and classification using predicted depth from monocular endoscopy. In: Medical Imaging 2019: Computer-Aided Diagnosis, vol. 10950, p. 1095011. International Society for Optics and Photonics (2019)

    Google Scholar 

  19. Pratt, P., Bergeles, C., Darzi, A., Yang, G.-Z.: Practical intraoperative stereo camera calibration. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 667–675. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_83

    Chapter  Google Scholar 

  20. Rappel, J.K.: Surgical stereo vision systems and methods for microsurgery. US Patent 9,330,477, 3 May 2016

    Google Scholar 

  21. Shimasaki, Y., Iwahori, Y., Neog, D.R., Woodham, R.J., Bhuyan, M.: Generating Lambertian image with uniform reflectance for endoscope image. In: IWAIT 2013, pp. 1–6 (2013)

    Google Scholar 

  22. Song, J., Patel, M., Girgensohn, A., Kim, C.: Combining deep learning with geometric features for image-based localization in the gastrointestinal tract. Expert Syst. Appl. 115631 (2021)

    Google Scholar 

  23. Song, J., Wang, J., Zhao, L., Huang, S., Dissanayake, G.: Dynamic reconstruction of deformable soft-tissue with stereo scope in minimal invasive surgery. IEEE Robot. Autom. Lett. 3(1), 155–162 (2017)

    Article  Google Scholar 

  24. Song, J., Wang, J., Zhao, L., Huang, S., Dissanayake, G.: MIS-SLAM: real-time large-scale dense deformable SLAM system in minimal invasive surgery based on heterogeneous computing. IEEE Robot. Autom. Lett. 3(4), 4068–4075 (2018)

    Article  Google Scholar 

  25. Stoyanov, D., Scarzanella, M.V., Pratt, P., Yang, G.-Z.: Real-time stereo reconstruction in robotically assisted minimally invasive surgery. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 275–282. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15705-9_34

    Chapter  Google Scholar 

  26. Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.: Deep endovo: a recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots. Neurocomputing 275, 1861–1870 (2018). https://doi.org/10.1016/j.neucom.2017.10.014, http://www.sciencedirect.com/science/article/pii/S092523121731665X

  27. Uzunbas, M.G., Chen, C., Metaxas, D.: An efficient conditional random field approach for automatic and interactive neuron segmentation. Med. Image Anal. 27, 31–44 (2016)

    Article  Google Scholar 

  28. Widya, A.R., Monno, Y., Imahori, K., Okutomi, M., Suzuki, S., Gotoda, T., Miki, K.: 3D reconstruction of whole stomach from endoscope video using structure-from-motion. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3900–3904. IEEE (2019)

    Google Scholar 

  29. Yang, G., Manela, J., Happold, M., Ramanan, D.: Hierarchical deep stereo matching on high-resolution images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5515–5524 (2019)

    Google Scholar 

  30. Ye, M., Johns, E., Handa, A., Zhang, L., Pratt, P., Yang, G.Z.: Self-supervised Siamese learning on stereo image pairs for depth estimation in robotic surgery. ar**v preprint ar**v:1705.08260 (2017)

  31. Zampokas, G., Tsiolis, K., Peleka, G., Mariolis, I., Malasiotis, S., Tzovaras, D.: Real-time 3D reconstruction in minimally invasive surgery with quasi-dense matching. In: 2018 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–6. IEEE (2018)

    Google Scholar 

  32. Zhan, J., Cartucho, J., Giannarou, S.: Autonomous tissue scanning under free-form motion for intraoperative tissue characterisation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 11147–11154. IEEE (2020)

    Google Scholar 

  33. Zhang, L., Ye, M., Giataganas, P., Hughes, M., Yang, G.Z.: Autonomous scanning for endomicroscopic mosaicing and 3D fusion. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3587–3593. IEEE (2017)

    Google Scholar 

  34. Zheng, C., Cham, T.J., Cai, J.: T2net: synthetic-to-realistic translation for solving single-image depth estimation tasks. In: Proceedings of the European Conference on Computer Vision, pp. 767–783 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **gwei Song .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 158935 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, J., Zhu, Q., Lin, J., Ghaffari, M. (2022). Bayesian Dense Inverse Searching Algorithm for Real-Time Stereo Matching in Minimally Invasive Surgery. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation