A Novel Knowledge Keeper Network for 7T-Free but 7T-Guided Brain Tissue Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13435))

  • 7914 Accesses

Abstract

An increase in signal-to-noise ratio (SNR) and susceptibility-induced contrast at higher field strengths, e.g., 7T, is crucial for medical image analysis by providing better insights for the pathophysiology, diagnosis, and treatment of several disease entities. However, it is difficult to obtain 7T images in real clinical practices due to the high cost and low accessibility. In this paper, we propose a novel knowledge keeper network (KKN) to guide brain tissue segmentation by taking advantage of 7T representations without explicitly using 7T images. By extracting features of a 3T input image substantially and then transforming them to 7T features via knowledge distillation (KD), our method achieves deriving 7T-like representations from a given 3T image and exploits them for tissue segmentation. On two independent datasets, we evaluated our method’s validity in qualitative and quantitative manners on 7T-like image synthesis and 7T-guided tissue segmentation by comparing with the comparative methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.nitrc.org/projects/ibsr.

References

  1. Avants, B.B., Tustison, N.J., Wu, J., Cook, P.A., Gee, J.C.: An open source multivariate framework for N-tissue segmentation with evaluation on public data. Neuroinformatics 9(4), 381–400 (2011)

    Article  Google Scholar 

  2. Bahrami, K., Shi, F., Rekik, I., Gao, Y., Shen, D.: 7T-guided super-resolution of 3T MRI. Med. Phys. 44(5), 1661–1677 (2017)

    Article  Google Scholar 

  3. Balchandani, P., Naidich, T.: Ultra-high-field MR neuroimaging. Am. J. Neuroradiol. 36(7), 1204–1215 (2015)

    Article  Google Scholar 

  4. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 535–541 (2006)

    Google Scholar 

  5. Chen, H., Dou, Q., Yu, L., Qin, J., Heng, P.A.: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage 170, 446–455 (2018)

    Article  Google Scholar 

  6. Chen, P., Liu, S., Zhao, H., Jia, J.: Distilling knowledge via knowledge review. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5008–5017 (2021)

    Google Scholar 

  7. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  8. Deng, M., et al.: Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling. Med. Phys. 43(12), 6588–6597 (2016)

    Article  Google Scholar 

  9. He, Y., Carass, A., Zuo, L., Dewey, B.E., Prince, J.L.: Autoencoder based self-supervised test-time adaptation for medical image analysis. Med. Image Anal. 72, 102136 (2021)

    Google Scholar 

  10. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. ar**v preprint ar**v:1503.02531 (2015)

  11. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  12. Van der Kolk, A.G., Hendrikse, J., Zwanenburg, J.J., Visser, F., Luijten, P.R.: Clinical applications of 7T MRI in the brain. Eur. J. Radiol. 82(5), 708–718 (2013)

    Article  Google Scholar 

  13. Kumar, P., Nagar, P., Arora, C., Gupta, A.: U-SegNet: fully convolutional neural network based automated brain tissue segmentation tool. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3503–3507. IEEE (2018)

    Google Scholar 

  14. Ma, X., Fu, S.: Position-aware recalibration module: learning from feature semantics and feature position. In: International Joint Conference on Artificial Intelligence, pp. 797–803 (2020)

    Google Scholar 

  15. Mao, X., Li, Q., **e, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  16. Nie, D., Wang, L., Adeli, E., Lao, C., Lin, W., Shen, D.: 3-D fully convolutional networks for multimodal isointense infant brain image segmentation. IEEE Trans. Cybern. 49(3), 1123–1136 (2018)

    Article  Google Scholar 

  17. Nöbauer-Huhmann, I.M., et al.: Magnetic resonance imaging contrast enhancement of brain tumors at 3 tesla versus 1.5 tesla. Invest. Radiol. 37(3), 114–119 (2002)

    Google Scholar 

  18. Oak, P.V., Kamathe, R.: Contrast enhancement of brain MRI images using histogram based techniques. Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. 1(3), 90–94 (2013)

    Google Scholar 

  19. Qu, L., Zhang, Y., Wang, S., Yap, P.T., Shen, D.: Synthesized 7T MRI from 3T MRI via deep learning in spatial and wavelet domains. Med. Image Anal. 62, 101663 (2020)

    Google Scholar 

  20. Wang, H., Li, Y., Wang, Y., Hu, H., Yang, M.H.: Collaborative distillation for ultra-resolution universal style transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1860–1869 (2020)

    Google Scholar 

  21. Wang, L., **e, C., Zeng, N.: RP-Net: a 3D convolutional neural network for brain segmentation from magnetic resonance imaging. IEEE Access 7, 39670–39679 (2019)

    Article  Google Scholar 

  22. Wang, P., Li, Y., Singh, K.K., Lu, J., Vasconcelos, N.: IMAGINE: image synthesis by image-guided model inversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3681–3690 (2021)

    Google Scholar 

  23. Wei, J., et al.: A cascaded nested network for 3T brain MR image segmentation guided by 7T labeling. Pattern Recognit. 124, 108420 (2021)

    Google Scholar 

  24. **ang, L., et al.: Deep embedding convolutional neural network for synthesizing CT image from T1-weighted MR image. Med. Image Anal. 47, 31–44 (2018)

    Article  Google Scholar 

  25. Zhang, Y., Cheng, J.-Z., **ang, L., Yap, P.-T., Shen, D.: Dual-domain cascaded regression for synthesizing 7T from 3T MRI. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 410–417. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_47

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) No. 2022-0-00959 ((Part 2) Few-Shot Learning of Causal Inference in Vision and Language for Decision Making) and by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) No. 2019-0-00079 (Department of Artificial Intelligence (Korea University)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung-Il Suk .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 917 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, J., Oh, K., Shen, D., Suk, HI. (2022). A Novel Knowledge Keeper Network for 7T-Free but 7T-Guided Brain Tissue Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation