Shape-Aware Weakly/Semi-Supervised Optic Disc and Cup Segmentation with Regional/Marginal Consistency

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Glaucoma is a chronic eye disease that permanently impairs vision. Vertical cup to disc ratio (vCDR) is essential for glaucoma screening. Thus, accurately segmenting the optic disc (OD) and optic cup (OC) from colour fundus images is essential. Previous fully-supervised methods achieved accurate segmentation results; then, they calculated the vCDR with offline post-processing step. However, a large set of labeled segmentation images are required for the training, which is costly and time-consuming. To solve this, we propose a weakly/semi-supervised framework with the benefits of geometric associations and specific domain knowledge between pixel-wise segmentation probability map (PM), geometry-aware modified signed distance function representations (mSDF), and local boundary region of interest characteristics (B-ROI). Firstly, we propose a dual consistency regularisation based semi-supervised paradigm, where the regional and marginal consistency benefits the proposed model from the objects’ inherent region and boundary coherence of a large amount of unlabeled data. Secondly, for the first time, we exploit the domain-specific knowledge between the boundary and region in terms of the perimeter and area of an oval shape of OD & OC, where a differentiable vCDR estimating module is proposed for the end-to-end training. Thus, our model does not need any offline post-process to generate vCDR. Furthermore, without requiring any additional laborious annotations, the supervision on vCDR can serve as a weakly-supervision for OD & OC region and boundary segmentation. Experiments on six large-scale datasets demonstrate that our method outperforms state-of-the-art semi-supervised approaches for segmentation of the optic disc and optic cup, and estimation of vCDR for glaucoma assessment in colour fundus images, respectively. The implementation code is made available. (https://github.com/smallmax00/Share_aware_Weakly-Semi_ODOC_seg)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 46.00
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 58.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.ukbiobank.ac.uk/.

References

  1. Almazroa, A., et al.: Retinal fundus images for glaucoma analysis: the RIGA dataset. In: Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, vol. 10579, p. 105790B. International Society for Optics and Photonics (2018)

    Google Scholar 

  2. Cheng, B., Girshick, R., Dollár, P., Berg, A.C., Kirillov, A.: Boundary IoU: improving object-centric image segmentation evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  3. Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans. Med. Imaging 37(7), 1597–1605 (2018)

    Article  Google Scholar 

  4. Fumero, F., Alayón, S., Sanchez, J.L., Sigut, J., Gonzalez-Hernandez, M.: RIM-ONE: an open retinal image database for optic nerve evaluation. In: 24th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6. IEEE (2011)

    Google Scholar 

  5. Gao, S., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.H.: Res2net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 43, 652–662 (2019)

    Article  Google Scholar 

  6. Jiang, W., Kolotouros, N., Pavlakos, G., Zhou, X., Daniilidis, K.: Coherent reconstruction of multiple humans from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5579–5588 (2020)

    Google Scholar 

  7. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  8. Lee, J., Kim, E., Lee, S., Lee, J., Yoon, S.: Ficklenet: weakly and semi-supervised semantic image segmentation using stochastic inference. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5267–5276 (2019)

    Google Scholar 

  9. Lee, J., Yi, J., Shin, C., Yoon, S.: Bbam: bounding box attribution map for weakly supervised semantic and instance segmentation. In: Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, pp. 2643–2652 (2021)

    Google Scholar 

  10. Li, Y., Luo, L., Lin, H., Chen, H., Heng, P.-A.: Dual-consistency semi-supervised learning with uncertainty quantification for COVID-19 lesion segmentation from CT images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 199–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_19

    Chapter  Google Scholar 

  11. Liu, X., et al.: Weakly supervised segmentation of COVID19 infection with scribble annotation on CT images. Pattern Recogn. 122, 108341 (2022)

    Article  Google Scholar 

  12. Lockwood, E.: Length of ellipse. Math. Gaz. 16(220), 269–270 (1932)

    Article  Google Scholar 

  13. Lu, Y., et al.: Taskology: utilizing task relations at scale. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8700–8709 (2021)

    Google Scholar 

  14. Luo, X.: Ssl4mis (2020). https://github.com/hilab-git/ssl4mis

  15. Luo, X., Chen, J., Song, T., Wang, G.: Semi-supervised medical image segmentation through dual-task consistency. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8801–8809 (2021)

    Google Scholar 

  16. Luo, X., et al.: Efficient semi-supervised gross target volume of nasopharyngeal carcinoma segmentation via uncertainty rectified pyramid consistency. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 318–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_30

    Chapter  Google Scholar 

  17. Meng, Y., et al.: Regression of instance boundary by aggregated CNN and GCN. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 190–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_12

    Chapter  Google Scholar 

  18. Meng, Y., et al.: CNN-GCN aggregation enabled boundary regression for biomedical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 352–362. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_35

    Chapter  Google Scholar 

  19. Meng, Y., et al.: Bi-GCN: boundary-aware input-dependent graph convolution network for biomedical image segmentation. In: 32nd British Machine Vision Conference: BMVC 2021. British Machine Vision Association (2021)

    Google Scholar 

  20. Meng, Y., et al.: Spatial uncertainty-aware semi-supervised crowd counting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15549–15559 (2021)

    Google Scholar 

  21. Meng, Y., et al.: Graph-based region and boundary aggregation for biomedical image segmentation. IEEE Trans. Med. Imaging 41, 690–701 (2021)

    Article  Google Scholar 

  22. Mukaka, M.M.: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 24(3), 69–71 (2012)

    Google Scholar 

  23. Orlando, J.I., et al.: REFUGE challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)

    Article  Google Scholar 

  24. Sivaswamy, J., Krishnadas, S., Joshi, G.D., Jain, M., Tabish, A.U.S.: Drishti-GS: retinal image dataset for optic nerve head (ONH) segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 53–56. IEEE (2014)

    Google Scholar 

  25. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  26. Wu, J., Wang, K., Shang, Z., Xu, J., Ding, D., Li, X., Yang, G.: Oval shape constraint based optic disc and cup segmentation in fundus photographs. In: BMVC, p. 265 (2019)

    Google Scholar 

  27. Xue, Y., et al.: Shape-aware organ segmentation by predicting signed distance maps. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12565–12572 (2020)

    Google Scholar 

  28. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  29. Zhang, Z., et al.: ORIGA-light: An online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 3065–3068. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalin Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, Y. et al. (2022). Shape-Aware Weakly/Semi-Supervised Optic Disc and Cup Segmentation with Regional/Marginal Consistency. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation