Metal-Organic Framework Composite-Based Biosensors: Biomedical Applications

  • Living reference work entry
  • First Online:
Handbook of Nanosensors

Abstract

Metal-organic frameworks (MOFs) are a novel type of crystalline material that boasts a range of uses across fields such as catalysis, biomedical engineering, microporous conductors, separation, and electrochemical biosensors. Thanks to their stability, tunable compositions and structures, and high porosity, MOFs are an excellent choice for crafting a diverse array of biosensors. Their unique properties, including strong fluorescence, chemical functionality, and affinity for probes such as DNA, aptamers, or antibodies, make them promising materials for use as biosensor platforms or electrode materials. These properties enable MOFs to detect biomedical analytes selectively and sensitively. Through coupling with different techniques such as electrochemical, fluorescence, and colorimetric methods, MOF-based materials showed promising applications for detecting various analytes. Regardless of their applications in the biomedical field, MOF-based biosensors are expected to pave the way for biochemical and food safety monitoring. Beyond that, this comprehensive chapter provides new insights into the construction of biosensors with MOF-based materials for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AED:

Anodic electrodeposition

AuNPs:

Gold nanoparticles

BSA:

Bovine serum albumin

C2H6S:

Dimethyl sulfide

CED:

Cathodic electrodeposition

CH4S:

Methyl mercaptan

cTnI:

Cardiac troponin I

CV:

Cyclic voltammetry

DPV:

Differential pulse voltammetry

EC:

Electrochemical

ECL:

Electrochemiluminescence

EPD:

Electrophoretic deposition

FET:

Field-effect transistor

FTIR:

Fourier transform infrared spectroscopy

GCE:

Glassy carbon electrode

H2S:

Hydrogen sulfide

HCV-RNA:

Hepatitis C virus ribonucleic acid

HRP:

Horseradish peroxidase

LOD:

Limit of detection

MD:

Maduramicin

MNPs:

Metal nanoparticles

MOFs:

Metal-organic frameworks

N-CNTs:

Nitrogen-doped carbon nanotubes

NF:

Nickel foam

NLM:

Nilutamide

NPs:

Nanoparticles

OXAL:

Oxaliplatin

PNK:

Polynucleotide kinase

POCT:

Point-of-care testing

RT-PCR:

Real-time polymerase chain reaction

SERS:

Surface-enhanced Raman scattering

SPE:

Screen-printed electrode

ssDNA:

Single-stranded DNA

SWV:

Square wave voltammetry

TMB:

3,3′,5,5′-Tetramethylbenzidine

TOB:

Tobramycin

ULS:

Ultrasound-assisted synthesis

VP:

Vibrio parahaemolyticus

VSCs:

Volatile sulfur compounds

References

  1. Mohankumar P, Ajayan J, Mohanraj T, Yasodharan R (2021) Recent developments in biosensors for healthcare and biomedical applications: a review. Measurement 167:108293

    Article  Google Scholar 

  2. Osman DI, El-Sheikh SM, Sheta SM, Ali OI, Salem AM, Shousha WG, El-Khamisy SF, Shawky SM (2019) Nucleic acids biosensors based on metal-organic framework (MOF): paving the way to clinical laboratory diagnosis. Biosens Bioelectron 141:111451

    Article  CAS  Google Scholar 

  3. Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129

    Article  CAS  Google Scholar 

  4. Teo EYL, Ali GAM, Algarni H, Cheewasedtham W, Rujiralai T, Chong KF (2019) One-step production of pyrene-1-boronic acid functionalized graphene for dopamine detection. Mater Chem Phys 231:286–291

    Article  CAS  Google Scholar 

  5. Zhang D, Liu Q (2016) Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron 75:273–284

    Article  CAS  Google Scholar 

  6. Cheng W, Tang X, Zhang Y, Wu D, Yang W (2021) Applications of metal-organic framework (MOF)-based sensors for food safety: enhancing mechanisms and recent advances. Trends Food Sci Technol 112:268–282

    Article  CAS  Google Scholar 

  7. Kempahanumakkagari S, Kumar V, Samaddar P, Kumar P, Ramakrishnappa T, Kim K-H (2018) Biomolecule-embedded metal-organic frameworks as an innovative sensing platform. Biotechnol Adv 36(2):467–481

    Article  CAS  Google Scholar 

  8. Pourtaheri E, Taher MA, Ali GA, Agarwal S, Gupta VK (2019) Low-cost and highly sensitive sensor for determining atorvastatin using PbTe nanoparticles-modified graphite screen-printed electrode. Int J Electrochem Sci 14:9622–9632

    Article  CAS  Google Scholar 

  9. Salehi Rozveh Z, Kazemi S, Karimi M, Ali GAM, Safarifard V (2020) Effect of functionalization of metal-organic frameworks on anion sensing. Polyhedron 183:114514

    Google Scholar 

  10. Thalji MR, Ibrahim AA, Chong KF, Soldatov AV, Ali GAM (2022) Glycopolymer-based materials: synthesis, properties, and biosensing applications. Top Curr Chem 380(5):45

    Article  CAS  Google Scholar 

  11. Haider J, Shahzadi A, Akbar MU, Hafeez I, Shahzadi I, Khalid A, Ashfaq A, Ahmad SOA, Dilpazir S, Imran M (2022) A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks. Biomater Adv 140:213049

    Google Scholar 

  12. Adil HI, Thalji MR, Yasin SA, Saeed IA, Assiri MA, Chong KF, Ali GAM (2022) Metal–organic frameworks (MOFs) based nanofiber architectures for the removal of heavy metal ions. RSC Adv 12(3):1433–1450

    Article  CAS  Google Scholar 

  13. Shayegan H, Ali GAM, Safarifard V (2020) Recent progress in the removal of heavy metal ions from water using metal-organic frameworks. ChemistrySelect 5(1):124–146

    Article  CAS  Google Scholar 

  14. Shayegan H, Ali GAM, Safarifard V (2020) Amide-functionalized metal–organic framework for high efficiency and fast removal of Pb(II) from aqueous solution. J Inorg Organomet Polym Mater 30:3170–3178

    Article  CAS  Google Scholar 

  15. Maspoch D, Ruiz-Molina D, Wurst K, Domingo N, Cavallini M, Biscarini F, Tejada J, Rovira C, Veciana J (2003) A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nat Mater 2(3):190–195

    Article  CAS  Google Scholar 

  16. Haider J, Shahzadi A, Akbar MU, Hafeez I, Shahzadi I, Khalid A, Ashfaq A, Ahmad SOA, Dilpazir S, Imran M, Ikram M, Ali G, Khan M, Khan Q, Maqbool M (2022) A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks. Biomater Adv 140:213049

    Article  CAS  Google Scholar 

  17. Rabiee N, Atarod M, Tavakolizadeh M, Asgari S, Rezaei M, Akhavan O, Pourjavadi A, Jouyandeh M, Lima EC, Hamed Mashhadzadeh A, Ehsani A, Ahmadi S, Saeb MR (2022) Green metal-organic frameworks (MOFs) for biomedical applications. Microporous Mesoporous Mater 335:111670

    Article  CAS  Google Scholar 

  18. Udourioh GA, Solomon MM, Epelle EI (2021) Metal organic frameworks as biosensing materials for COVID-19. Cell Mol Bioeng 14(6):535–553

    Article  CAS  Google Scholar 

  19. Dourandish Z, Tajik S, Beitollahi H, Jahani PM, Nejad FG, Sheikhshoaie I, Di Bartolomeo A (2022) A comprehensive review of metal–organic framework: synthesis, characterization, and investigation of their application in electrochemical biosensors for biomedical analysis. Sensors 22(6):2238

    Article  CAS  Google Scholar 

  20. Hou Y, Lv C, Liu W, Guo Y, ** Y, Li B, Zhang Y, Liu Y (2022) In situ synthesis of copper metal-organic framework on paper-based device for dual-mode detection of volatile sulfur compounds in exhaled breath. Sensors Actuators B Chem 352:131008

    Article  CAS  Google Scholar 

  21. Bieniek A, Terzyk AP, Wiśniewski M, Roszek K, Kowalczyk P, Sarkisov L, Keskin S, Kaneko K (2021) MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: recent advances and perspectives. Prog Mater Sci 117:100743

    Article  CAS  Google Scholar 

  22. Ranjbar M, Pardakhty A, Amanatfard A, Asadipour A (2018) Efficient drug delivery of β-estradiol encapsulated in Zn-metal–organic framework nanostructures by microwave-assisted coprecipitation method. Drug Des Devel Ther 12:2635

    Article  CAS  Google Scholar 

  23. Campagnol N, Van Assche TRC, Li M, Stappers L, Dincă M, Denayer JFM, Binnemans K, De Vos DE, Fransaer J (2016) On the electrochemical deposition of metal–organic frameworks. J Mater Chem A 4(10):3914–3925

    Article  CAS  Google Scholar 

  24. Zhang S, Jian M, Zhang Q, Xu R, Qu J, Luo X, Li X, Hu J, Liu R, Zhang X (2020) Recyclable printed circuit boards and alkali reduction wastewater: approach to a sustainable copper-based metal–organic framework. ACS Sustain Chem Eng 8(3):1371–1379

    Article  CAS  Google Scholar 

  25. Wang J, Liu Y, Guo X, Qu H, Chang R, Ma J (2020) Efficient adsorption of dyes using polyethyleneimine-modified NH2-MIL-101(Al) and its sustainable application as a flame retardant for an epoxy resin. ACS Omega 5(50):32286–32294

    Article  CAS  Google Scholar 

  26. Vaitsis C, Sourkouni G, Argirusis C (2020) Chapter 11 – Sonochemical synthesis of MOFs. In: Mozafari M (ed) Metal-organic frameworks for biomedical applications. Woodhead Publishing, pp 223–244

    Chapter  Google Scholar 

  27. Sargazi G, Afzali D, Mostafavi A (2018) An efficient and controllable ultrasonic-assisted microwave route for flower-like Ta(V)–MOF nanostructures: preparation, fractional factorial design, DFT calculations, and high-performance N2 adsorption. J Porous Mater 25(6):1723–1741

    Article  CAS  Google Scholar 

  28. Zhang X, Wan K, Subramanian P, Xu M, Luo J, Fransaer J (2020) Electrochemical deposition of metal–organic framework films and their applications. J Mater Chem A 8(16):7569–7587

    Article  CAS  Google Scholar 

  29. Alizadeh S, Nematollahi D (2017) Electrochemically assisted self-assembly technique for the fabrication of mesoporous metal–organic framework thin films: composition of 3D hexagonally packed crystals with 2D honeycomb-like mesopores. J Am Chem Soc 139(13):4753–4761

    Article  CAS  Google Scholar 

  30. Chowdhury MA (2017) Metal-organic-frameworks as contrast agents in magnetic resonance imaging. ChemBioEng Rev 4(4):225–239

    Article  CAS  Google Scholar 

  31. Cui Y, Chen B, Qian G (2014) Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord Chem Rev 273-274:76–86

    Article  CAS  Google Scholar 

  32. Rieter WJ, Taylor KML, An H, Lin W, Lin W (2006) Nanoscale metal−organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 128(28):9024–9025

    Article  CAS  Google Scholar 

  33. Younis SA, Bhardwaj N, Bhardwaj SK, Kim K-H, Deep A (2021) Rare earth metal–organic frameworks (RE-MOFs): synthesis, properties, and biomedical applications. Coord Chem Rev 429:213620

    Article  CAS  Google Scholar 

  34. Rönfeldt P, Reinsch H, Poschmann MPM, Terraschke H, Stock N (2020) Scandium metal–organic frameworks containing tetracarboxylate linker molecules: synthesis, structural relationships, and properties. Cryst Growth Des 20(7):4686–4694

    Article  Google Scholar 

  35. Liu J, Pei L, **a Z, Xu Y (2019) Hierarchical accordion-like lanthanide-based metal–organic frameworks: solvent-free syntheses and ratiometric luminescence temperature-sensing properties. Cryst Growth Des 19(11):6586–6591

    Article  CAS  Google Scholar 

  36. Azizi Vahed T, Naimi-Jamal MR, Panahi L (2019) Alginate-coated ZIF-8 metal-organic framework as a green and bioactive platform for controlled drug release. J Drug Delivery Sci Technol 49:570–576

    Article  CAS  Google Scholar 

  37. Alammar T, Hlova IZ, Gupta S, Biswas A, Ma T, Zhou L, Balema V, Pecharsky VK, Mudring A-V (2020) Mechanochemical synthesis, luminescent and magnetic properties of lanthanide benzene-1,4-dicarboxylate coordination polymers (Ln0.5Gd0.5)2 (1,4-BDC)3(H2O)4; Ln = Sm, Eu, Tb. New J Chem 44(3):1054–1062

    Article  CAS  Google Scholar 

  38. Samaddar P, Son Y-S, Tsang DCW, Kim K-H, Kumar S (2018) Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coord Chem Rev 368:93–114

    Article  CAS  Google Scholar 

  39. Rasheed T, Rizwan K (2022) Metal-organic frameworks based hybrid nanocomposites as state-of–the-art analytical tools for electrochemical sensing applications. Biosens Bioelectron 199:113867

    Google Scholar 

  40. Azizpour Moallem Q, Beitollahi H (2022) Electrochemical sensor for simultaneous detection of dopamine and uric acid based on a carbon paste electrode modified with nanostructured Cu-based metal-organic frameworks. Microchem J 177:107261

    Google Scholar 

  41. Xu Y, Li Q, Xue H, Pang H (2018) Metal-organic frameworks for direct electrochemical applications. Coord Chem Rev 376:292–318

    Article  CAS  Google Scholar 

  42. Zhou J, Li Y, Wang W, Tan X, Lu Z, Han H (2020) Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens Bioelectron 164:112332

    Google Scholar 

  43. Wang Y, Zhang Y, Sha H, **ong X, Jia N (2019) Design and biosensing of a ratiometric electrochemiluminescence resonance energy transfer aptasensor between a g-C3N4 nanosheet and Ru@MOF for amyloid-β protein. ACS Appl Mater Interfaces 11(40):36299–36306

    Article  CAS  Google Scholar 

  44. Dong H, Liu S, Liu Q, Li Y, Xu Z, Li Y, Wei Q (2022) Mixed-ligand-regulated self-enhanced luminous Eu-MOF as an ECL signal probe for an oriented antibody-decorated biosensing platform. Anal Chem 94(37):12852–12859

    Article  CAS  Google Scholar 

  45. Shao K, Wang B, Nie A, Ye S, Ma J, Li Z, Lv Z, Han H (2018) Target-triggered signal-on ratiometric electrochemiluminescence sensing of PSA based on MOF/Au/G-quadruplex. Biosens Bioelectron 118:160–166

    Article  CAS  Google Scholar 

  46. Pashazadeh-Panahi P, Belali S, Sohrabi H, Oroojalian F, Hashemzaei M, Mokhtarzadeh A, de la Guardia M (2021) Metal-organic frameworks conjugated with biomolecules as efficient platforms for development of biosensors. TrAC Trends Anal Chem 141:116285

    Google Scholar 

  47. Wang S, Wang M, Li C, Li H, Ge C, Zhang X, ** Y (2020) A highly sensitive and stable electrochemiluminescence immunosensor for alpha-fetoprotein detection based on luminol-AgNPs@Co/Ni-MOF nanosheet microflowers. Sensors Actuators B Chem 311:127919

    Google Scholar 

  48. Cui Y, Zhu F, Chen B, Qian G (2015) Metal-organic frameworks for luminescence thermometry. Chem Commun 51(35):7420–7431

    Article  CAS  Google Scholar 

  49. Hu Z, Deibert BJ, Li J (2014) Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 43(16):5815–5840

    Article  CAS  Google Scholar 

  50. Lei M, Ge F, Zheng H (2022) Stable cd metal–organic framework as a multiresponsive luminescent biosensor for rapid, accurate, and recyclable detection of hippuric acid, nucleoside phosphates, and Fe3+ in urine and serum. Inorg Chem 61(29):11243–11251

    Article  CAS  Google Scholar 

  51. Miller SE, Teplensky MH, Moghadam PZ, Fairen-Jimenez D (2016) Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface Focus 6(4):20160027

    Article  Google Scholar 

  52. Vikrant K, Kumar V, Ok YS, Kim K-H, Deep A (2018) Metal-organic framework (MOF)-based advanced sensing platforms for the detection of hydrogen sulfide. TrAC Trends Anal Chem 105:263–281

    Article  CAS  Google Scholar 

  53. Baretta R, Gabrielli V, Frasconi M (2022) Nanozyme-cellulose hydrogel composites enabling cascade catalysis for the colorimetric detection of glucose. ACS Appl Nano Mater 5(10):13845–13853

    Article  CAS  Google Scholar 

  54. Chen H, You Z, Wang X, Qiu Q, Ying Y, Wang Y (2022) An artificial olfactory sensor based on flexible metal–organic frameworks forsensing VOCs. Chem Eng J 446:137098

    Google Scholar 

  55. Wang L, Hu Z, Wu S, Pan J, Xu X, Niu X (2020) A peroxidase-mimicking Zr-based MOF colorimetric sensing array to quantify and discriminate phosphorylated proteins. Anal Chim Acta 1121:26–34

    Article  CAS  Google Scholar 

  56. Xu W, Jiao L, Yan H, Wu Y, Chen L, Gu W, Du D, Lin Y, Zhu C (2019) Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl Mater Interfaces 11(25):22096–22101

    Google Scholar 

  57. Wang S, Deng W, Yang L, Tan Y, **e Q, Yao S (2017) Copper-based metal–organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of Staphylococcus aureus. ACS Appl Mater Interfaces 9(29):24440–24445

    Article  CAS  Google Scholar 

  58. Ai L, Li L, Zhang C, Fu J, Jiang J (2013) MIL-53 (Fe): a metal–organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem Eur J 19(45):15105–15108

    Article  CAS  Google Scholar 

  59. Wang Y, Zhu Y, Binyam A, Liu M, Wu Y, Li F (2016) Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens Bioelectron 86:432–438

    Article  CAS  Google Scholar 

  60. Gao C, Zhu H, Chen J, Qiu H (2017) Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H2O2 and ascorbic acid. Chin Chem Lett 28(5):1006–1012

    Google Scholar 

  61. Zhang Y, Zhang W, Chen K, Yang Q, Hu N, Suo Y, Wang J (2018) Highly sensitive and selective colorimetric detection of glutathione via enhanced Fenton-like reaction of magnetic metal organic framework. Sensors Actuators B Chem 262:95–101

    Article  CAS  Google Scholar 

  62. Qin F-X, Jia S-Y, Wang F-F, Wu S-H, Song J, Liu Y (2013) Hemin@metal–organic framework with peroxidase-like activity and its application to glucose detection. Cat Sci Technol 3(10):2761–2768

    Article  CAS  Google Scholar 

  63. Fu JH, Zhong Z, **e D, Guo YJ, Kong DX, Zhao ZX, Zhao ZX, Li M (2020) SERS-active MIL-100(Fe) sensory array for ultrasensitive and multiplex detection of VOCs. Angew Chem Int Ed 59(46):20489–20498

    Article  CAS  Google Scholar 

  64. Özkan SA, Uslu B, Aboul-Enein HY (2003) Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit Rev Anal Chem 33(3):155–181

    Article  Google Scholar 

  65. Qian L, Durairaj S, Prins S, Chen A (2021) Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens Bioelectron 175:112836

    Article  CAS  Google Scholar 

  66. Hu M, Wang Y, Yang J, Sun Y, **ng G, Deng R, Hu X, Zhang G (2019) Competitive electrochemical immunosensor for maduramicin detection by multiple signal amplification strategy via hemin@Fe-MIL-88NH2/AuPt. Biosens Bioelectron 142:111554

    Article  CAS  Google Scholar 

  67. Song Y, Xu M, Liu X, Li Z, Wang C, Jia Q, Zhang Z, Du M (2021) A label-free enrofloxacin electrochemical aptasensor constructed by a semiconducting CoNi-based metal–organic framework (MOF). Electrochim Acta 368:137609

    Article  CAS  Google Scholar 

  68. Zhang H-W, Li H-K, Han Z-Y, Yuan R, He H (2022) Incorporating fullerenes in nanoscale metal–organic matrixes: an ultrasensitive platform for impedimetric aptasensing of tobramycin. ACS Appl Mater Interfaces 14(5):7350–7357

    Article  Google Scholar 

  69. Akhter S, Mohd Zain NK, Shalauddin M, Singh VK, Misnon II, Sharma RK, Das S, Basirun WJ, Johan MR, Jose R (2021) Tri-metallic Co-Ni-Cu based metal organic framework nanostructures for the detection of an anticancer drug nilutamide. Sensors Actuators A Phys 325:112711

    Article  CAS  Google Scholar 

  70. Chen X, Li Y, Li X, Li R, Ye B (2022) Transition metal copper composite ionic liquid self-built ratiometric sensor for the detection of paracetamol. Anal Chim Acta 1209:338992

    Article  CAS  Google Scholar 

  71. Mahnashi MH, Mahmoud AM, Alhazzani K, Alanazi AZ, Alaseem AM, Algahtani MM, El-Wekil MM (2021) Ultrasensitive and selective molecularly imprinted electrochemical oxaliplatin sensor based on a novel nitrogen-doped carbon nanotubes/Ag@cu MOF as a signal enhancer and reporter nanohybrid. Microchim Acta 188(4):124

    Article  CAS  Google Scholar 

  72. Lakhdari D, Guittoum A, Benbrahim N, Belgherbi O, Berkani M, Vasseghian Y, Lakhdari N (2021) A novel non-enzymatic glucose sensor based on NiFe (NPs)–polyaniline hybrid materials. Food Chem Toxicol 151:112099

    Article  CAS  Google Scholar 

  73. Gorle DB, Ponnada S, Kiai MS, Nair KK, Nowduri A, Swart HC, Ang EH, Nanda KK (2021) Review on recent progress in metal–organic framework-based materials for fabricating electrochemical glucose sensors. J Mater Chem B 9(38):7927–7954

    Article  CAS  Google Scholar 

  74. Shi M-Y, Xu M, Gu Z-Y (2019) Copper-based two-dimensional metal-organic framework nanosheets as horseradish peroxidase mimics for glucose fluorescence sensing. Anal Chim Acta 1079:164–170

    Article  CAS  Google Scholar 

  75. Wang J, Hu C, Wang YS, Cui H (2022) Chemiluminescent two-dimensional metal–organic framework with multiple metal catalytic centers and its peroxidase-like activity for sensing of small molecules. ACS Appl Mater Interfaces 14(2):3156–3164

    Article  CAS  Google Scholar 

  76. Badoei-dalfard A, Sohrabi N, Karami Z, Sargazi G (2019) Fabrication of an efficient and sensitive colorimetric biosensor based on Uricase/Th-MOF for uric acid sensing in biological samples. Biosens Bioelectron 141:111420

    Article  CAS  Google Scholar 

  77. Li J, Yu J, Sun Z, Liu H, Wang X (2021) Innovative integration of phase-change microcapsules with metal–organic frameworks into an intelligent biosensing system for enhancing dopamine detection. ACS Appl Mater Interfaces 13(35):41753–41772

    Article  CAS  Google Scholar 

  78. Cheng Y, Wu J, Guo C, Li X-G, Ding B, Li Y (2017) A facile water-stable MOF-based “off–on” fluorescent switch for label-free detection of dopamine in biological fluid. J Mater Chem B 5(13):2524–2535

    Article  CAS  Google Scholar 

  79. **a Y, Sun K, Zuo YN, Zhu S, Zhao XE (2022) Fluorescent MOF-based nanozymes for discrimination of phenylenediamine isomers and ratiometric sensing of o-phenylenediamine. Chin Chem Lett 33(4):2081–2085

    Article  CAS  Google Scholar 

  80. Wang B, Luo Y, Gao L, Liu B, Duan G (2021) High-performance field-effect transistor glucose biosensors based on bimetallic Ni/Cu metal-organic frameworks. Biosens Bioelectron 171:112736

    Article  CAS  Google Scholar 

  81. Ye X, Jiang T, Ma Y, To D, Wang S, Chen J (2023) A portable, low-cost and high-throughput electrochemical impedance spectroscopy device for point-of-care biomarker detection. Biosens Bioelectron X 13:100301

    Google Scholar 

  82. Luo Z, Sun D, Tong Y, Zhong Y, Chen Z (2019) DNA nanotetrahedron linked dual-aptamer based voltammetric aptasensor for cardiac troponin I using a magnetic metal-organic framework as a label. Microchim Acta 186(6):374

    Article  Google Scholar 

  83. Li S, Hu C, Chen C, Zhang J, Bai Y, Tan CS, Ni G, He F, Li W, Ming D (2021) Molybdenum disulfide supported on metal–organic frameworks as an ultrasensitive layer for the electrochemical detection of the ovarian cancer biomarker CA125. ACS Appl Bio Mater 4(7):5494–5502

    Article  CAS  Google Scholar 

  84. Yan M, Ye J, Zhu Q, Zhu L, Huang J, Yang X (2019) Ultrasensitive immunosensor for cardiac troponin I detection based on the electrochemiluminescence of 2D Ru-MOF nanosheets. Anal Chem 91(15):10156–10163

    Article  CAS  Google Scholar 

  85. Li Y, Yu C, Yang B, Liu Z, **a P, Wang Q (2018) Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum. Biosens Bioelectron 102:307–315

    Article  CAS  Google Scholar 

  86. Zhong YF, Bao GM, Qiu M, **a YF, Li W, Tao YQ, Liu SY, Li SH, **ao W, Zhang Y, Yuan HQ (2022) Highly selective and sensitive fluorescent biosensor for the detection of serotonin and its metabolite by Eu3+-Doped Metal-Organic framework. Chem Eng J 442. https://doi.org/10.2139/ssrn.3996842

  87. Liu X, Gao X, Yang L, Zhao Y, Li F (2021) Metal–organic framework-functionalized paper-based electrochemical biosensor for ultrasensitive exosome assay. Anal Chem 93(34):11792–11799

    Article  CAS  Google Scholar 

  88. Tang Z, He J, Chen J, Niu Y, Zhao Y, Zhang Y, Yu C (2018) A sensitive sandwich-type immunosensor for the detection of galectin-3 based on N-GNRs-Fe-MOFs@AuNPs nanocomposites and a novel AuPt-methylene blue nanorod. Biosens Bioelectron 101:253–259

    Article  CAS  Google Scholar 

  89. Tian J, Liang Z, Hu O, He Q, Sun D, Chen Z (2021) An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochim Acta 387:138553

    Article  CAS  Google Scholar 

  90. Cui L, Hu J, Li C-c, Wang C-m, Zhang C-y (2018) An electrochemical biosensor based on the enhanced quasi-reversible redox signal of prussian blue generated by self-sacrificial label of iron metal-organic framework. Biosens Bioelectron 122:168–174

    Article  CAS  Google Scholar 

  91. Zhao S, Zhang Y, Ding S, Fan J, Luo Z, Liu K, Shi Q, Liu W, Zang G (2019) A highly sensitive label-free electrochemical immunosensor based on AuNPs-PtNPs-MOFs for nuclear matrix protein 22 analysis in urine sample. J Electroanal Chem 834:33–42

    Article  CAS  Google Scholar 

  92. Wu H, Li M, Wang Z, Yu H, Han J, **e G, Chen S (2019) Highly stable Ni-MOF comprising triphenylamine moieties as a high-performance redox indicator for sensitive aptasensor construction. Anal Chim Acta 1049:74–81

    Article  CAS  Google Scholar 

  93. Li X, Zhao Y, Hao X, Wang X, Luan F, Tian C, Zhang Z, Yu S, Zhuang X (2022) Self-luminescent europium based metal organic frameworks nanorods as a novel electrochemiluminescence chromophore for sensitive ulinastatin detection in biological samples. Talanta 250:123726

    Google Scholar 

  94. Zhou X, Guo S, Gao J, Zhao J, Xue S, Xu W (2017) Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases. Biosens Bioelectron 98:83–90

    Article  CAS  Google Scholar 

  95. Sheta SM, El-Sheikh SM, Osman DI, Salem AM, Ali OI, Harraz FA, Shousha WG, Shoeib MA, Shawky SM, Dionysiou DD (2020) A novel HCV electrochemical biosensor based on a polyaniline@Ni-MOF nanocomposite. Dalton Trans 49(26):8918–8926

    Article  CAS  Google Scholar 

  96. Li N, Huang X, Sun D, Yu W, Tan W, Luo Z, Chen Z (2018) Dual-aptamer-based voltammetric biosensor for the Mycobacterium tuberculosis antigen MPT64 by using a gold electrode modified with a peroxidase loaded composite consisting of gold nanoparticles and a Zr(IV)/terephthalate metal-organic framework. Microchim Acta 185(12):543

    Article  Google Scholar 

  97. Wang W, Tan L, Wu J, Li T, **e H, Wu D, Gan N (2020) A universal signal-on electrochemical assay for rapid on-site quantitation of vibrio parahaemolyticus using aptamer modified magnetic metal–organic framework and phenylboronic acid-ferrocene co-immobilized nanolabel. Anal Chim Acta 1133:128–136

    Article  CAS  Google Scholar 

  98. Wang Y, Chen R, Shen B, Li C, Chen J, Wang Y, Tian S, Li X, Luo N, Liu R, Ding S, Zhu C, **a Q (2022) Electrochemiluminescent (ECL)biosensor for Burkholderia pseudomallei based on cobalt-doped MOF decorated with gold nanoparticles and N-(4-aminobutyl)-N-(ethylisoluminol). Microchim Acta 189:355

    Google Scholar 

  99. Panhwar S, Ilhan H, Hassan SS, Zengin A, Boyacı IH, Tamer U (2020) Dual responsive disposable electrode for the enumeration of Escherichia coli in whole blood. Electroanalysis 32(10):2244–2252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gharieb S. El-Sayyad or Gomaa A. M. Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Elfadil, D., El-Sayyad, G.S., Ali, G.A.M. (2024). Metal-Organic Framework Composite-Based Biosensors: Biomedical Applications. In: Ali, G.A.M., Chong, K.F., Makhlouf, A.S.H. (eds) Handbook of Nanosensors. Springer, Cham. https://doi.org/10.1007/978-3-031-16338-8_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16338-8_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16338-8

  • Online ISBN: 978-3-031-16338-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation