Spinel Sensors and Biosensors

  • Living reference work entry
  • First Online:
Handbook of Nanosensors

Abstract

Magnetic nanoparticles have gained growing attention in the formation and development of sensors and biosensors for many applications. Spinel nanoferrite structures are the most broadly discovered detecting structures for the finding and quantification of the progress of hazardous gases resulting from various industries and biological and waste applications. Additionally, these nanoparticles are used for observing, serving, and instructing many environmental contaminants. This chapter proceeding the literature accessible on ferrite materials. Nanoferrite structures are one of the most sightseen promising sensing structures for the detection, identification, and quantification of the advancement of various toxic gases from biological pollutants, vehicle exhaust, environmental pollution, and industry fields. Generally, spinel ferrites possess specific porosity and physicochemical absorption features, which are easily improved. This chapter describes and discusses the modern applications of spinel ferrites in sensor and biosensor fields and will address future developments and their perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CEA:

Carcinoembryonic antigen

EMR:

Electromagnetic radiation

FCC:

Face-centered cubic spinel

FE:

Ferroelectric

FE-SEM :

Field emission scanning electron microscopy

Hc:

Coercivity

HR-TEM:

High resolution-transmission electron microscopy

MF:

Multiferroics

MG:

Malachite green dye

M-H :

Magnetization (M) vs. magnetic field (H)

NPs:

Nanoparticles

NSE:

Neuron-specific enolase

ppm/ppb/ppt:

Parts-per-million/parts-per-billion/parts-per-trillion

RE :

Rare-earth

RH:

Relative humidity

SOFCs:

Solid oxide fuel cells

tetr and oct:

Tetrahedral and octahedral

References

  1. Amiri M, Eskandari K, Salavati-Niasari M (2019) Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv Colloid Interf Sci 271:101982. https://doi.org/10.1016/J.CIS.2019.07.003

    Article  CAS  Google Scholar 

  2. Alsafari IA, Munir S, Zulfiqar S, Saif MS, Warsi MF, Shahid M (2021) Synthesis, characterization, photocatalytic and antibacterial properties of copper Ferrite/MXene (CuFe2O4/Ti3C2) nanohybrids. Ceram Int 47:28874–28883. https://doi.org/10.1016/J.CERAMINT.2021.07.048

    Article  CAS  Google Scholar 

  3. ElNahrawy AM, Mansour AM, ElAttar HA, Sakr EMM, Soliman AA, Hammad ABA (2020) Impact of Mn-substitution on structural, optical, and magnetic properties evolution of sodium–cobalt ferrite for opto-magnetic applications. J Mater Sci Mater Electron 31:6224–6232. https://doi.org/10.1007/s10854-020-03176-2

    Article  CAS  Google Scholar 

  4. Lavorato G, Alzamora M, Contreras C, Burlandy G, Jochen Litterst F, Baggio-Saitovitch Lavorato EG, Contreras C, Litterst FJ, Baggio-Saitovitch E, Alzamora M, Burlandy G (2019) Internal structure and magnetic properties in cobalt ferrite nanoparticles: influence of the synthesis method. Part Part Syst Charact 36:1900061. https://doi.org/10.1002/PPSC.201900061

    Article  Google Scholar 

  5. Mohapatra S, Rout SR, Maiti S, Maiti TK, Panda AB (2011) Monodisperse mesoporous cobalt ferrite nanoparticles: synthesis and application in targeted delivery of antitumor drugs. J Mater Chem 21:9185–9193. https://doi.org/10.1039/C1JM10732A

    Article  CAS  Google Scholar 

  6. Winiarska K, Szczygieł I, Klimkiewicz R (2012) Manganese–zinc ferrite synthesis by the sol–gel autocombustion method. Effect of the precursor on the Ferrite’s catalytic properties. Ind Eng Chem Res 52:353–361. https://doi.org/10.1021/IE301658Q

    Article  Google Scholar 

  7. Sonu DV, Sharma S, Raizada P, Hosseini-Bandegharaei A, Kumar Gupta V, Singh P (2019) Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J Saudi Chem Soc 23:1119–1136. https://doi.org/10.1016/j.jscs.2019.07.003

    Article  CAS  Google Scholar 

  8. Subha A, Shalini MG, Rout S, Sahoo SC (2020) Magnetic ordering and enhancement of magnetization in zinc-substituted copper ferrite nanoparticles. J Supercond Nov Magn 33:3577–3586. https://doi.org/10.1007/S10948-020-05613-Z/FIGURES/9

    Article  CAS  Google Scholar 

  9. Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2011) Synthesis and characterization of nickel ferrite magnetic nanoparticles. Mater Res Bull 46:2208–2211. https://doi.org/10.1016/j.materresbull.2011.09.009

    Article  CAS  Google Scholar 

  10. Soufi A, Hajjaoui H, Elmoubarki R, Abdennouri M, Qourzal S, Barka N (2021) Spinel ferrites nanoparticles: synthesis methods and application in heterogeneous Fenton oxidation of organic pollutants – a review. Appl Surf Sci Adv 6:100145

    Article  Google Scholar 

  11. Kefeni KK, Msagati TAM, Mamba BB (2017) Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater Sci Eng B Solid-State Mater Adv Technol 215:37–55. https://doi.org/10.1016/J.MSEB.2016.11.002

    Article  CAS  Google Scholar 

  12. Brar SK, Verma M, Tyagi RD, Surampalli RY (2010) Engineered nanoparticles in wastewater and wastewater sludge – evidence and impacts. Waste Manag 30:504–520. https://doi.org/10.1016/J.WASMAN.2009.10.012

    Article  CAS  Google Scholar 

  13. Wang C, Wang Y, Shi WD, Yan WC (2023) Electric field assisted assembly of nanoparticle loaded microspheres toward industrial applications for organic dye removal. Sep Purif Technol 306:122569. https://doi.org/10.1016/j.seppur.2022.122565

    Article  CAS  Google Scholar 

  14. Iftikhar B, Arshad Siddiqui M, Javed T (2023) Dynamics of magnetohydrodynamic and ferrohydrodynamic natural convection flow of ferrofluid inside an enclosure under non-uniform magnetic field. Alex Eng J 66:523–536. https://doi.org/10.1016/j.aej.2022.11.011

    Article  Google Scholar 

  15. Su H, Zhang H, Liu F, Chun F, Zhang B, Chu X, Huang H, Deng W, Gu B, Zhang H, Zheng X, Zhu M, Yang W (2017) High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes. Chem Eng J 322:73–81. https://doi.org/10.1016/j.cej.2017.04.012

    Article  CAS  Google Scholar 

  16. Wei J, Zhang X, Liu Q, Li Z, Liu L, Wang J (2014) Magnetic separation of uranium by CoFe2O4 hollow spheres. Chem Eng J 241:228–234. https://doi.org/10.1016/J.CEJ.2013.12.035

    Article  CAS  Google Scholar 

  17. Chaibakhsh N, Moradi-Shoeili Z (2019) Enzyme mimetic activities of spinel substituted nanoferrites (MFe2O4): a review of synthesis, mechanism and potential applications. Mater Sci Eng C 99:1424–1447. https://doi.org/10.1016/J.MSEC.2019.02.086

    Article  CAS  Google Scholar 

  18. Abou Hammad AB, Hemdan BA, El Nahrawy AM (2020) Facile synthesis and potential application of Ni0.6Zn0.4Fe2O4 and Ni0.6Zn0.2Ce0.2Fe2O4 magnetic nanocubes as a new strategy in sewage treatment. J Environ Manag 270:110816. https://doi.org/10.1016/j.jenvman.2020.110816

    Article  CAS  Google Scholar 

  19. Goh SC, Chia CH, Zakaria S, Yusoff M, Haw CY, Ahmadi S, Huang NM, Lim HN (2010) Hydrothermal preparation of high saturation magnetization and coercivity cobalt ferrite nanocrystals without subsequent calcination. Mater Chem Phys 120:31–35. https://doi.org/10.1016/J.MATCHEMPHYS.2009.10.016

    Article  CAS  Google Scholar 

  20. Uberuaga BP, Tang M, Jiang C, Valdez JA, Smith R, Wang Y, Sickafus KE (2015) Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores. Nat Commun 6:1–8. https://doi.org/10.1038/ncomms9750

    Article  CAS  Google Scholar 

  21. Srivastava M, Ojha AK, Chaubey S, Materny A (2009) Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J Alloys Compd 481:515–519. https://doi.org/10.1016/j.jallcom.2009.03.027

    Article  CAS  Google Scholar 

  22. Dojcinovic MP, Vasiljevic ZZ, Pavlovic VP, Barisic D, Pajic D, Tadic NB, Nikolic MV (2021) Mixed Mg–Co spinel ferrites: structure, morphology, magnetic and photocatalytic properties. J Alloys Compd 855:157429. https://doi.org/10.1016/j.jallcom.2020.157429

    Article  CAS  Google Scholar 

  23. Andersen HL, Saura-Múzquiz M, Granados-Miralles C, Canévet E, Lock N, Christensen M (2018) Crystalline and magnetic structure–property relationship in spinel ferrite nanoparticles. Nanoscale 10:14902–14914. https://doi.org/10.1039/C8NR01534A

    Article  CAS  Google Scholar 

  24. Bohra M, Alman V, Arras R (2021) Nanostructured ZnFe2O4: an exotic energy material. Nanomaterials 11:1286. https://doi.org/10.3390/nano11051286

    Article  CAS  Google Scholar 

  25. Pilania G, Kocevski V, Valdez JA, Kreller CR, Uberuaga BP (2020) Prediction of structure and cation ordering in an ordered normal-inverse double spinel. Commun Mater 1:84. https://doi.org/10.1038/s43246-020-00082-2

    Article  Google Scholar 

  26. Channagoudra G, Saw AK, Dayal V (2021) Role of structure and cation distribution on magnetic and electrical properties in inverse spinel copper ferrite. J Phys Chem Solids 154:110086. https://doi.org/10.1016/j.jpcs.2021.110086

    Article  CAS  Google Scholar 

  27. Rao Daruvuri H, Chandu K, Murali N, Parajuli D, Mulushoa SY, Dasari MP (2022) Effect on structural, dc electrical resistivity, and magnetic properties by the substitution of Zn2+ on Co-Cu nano ferrite. Inorg Chem Commun 143:109794. https://doi.org/10.1016/j.inoche.2022.109794

    Article  CAS  Google Scholar 

  28. Thakur S, Rai R, Sharma S (2015) Structural characterization and magnetic study of NiFexO4 synthesized by co-precipitation method. Mater Lett 139:368–372. https://doi.org/10.1016/j.matlet.2014.10.014

    Article  CAS  Google Scholar 

  29. Amulya MAS, Nagaswarupa HP, Kumar MRA, Ravikumar CR, Prashantha SC, Kusuma KB (2020) Sonochemical synthesis of NiFe2O4 nanoparticles: characterization and their photocatalytic and electrochemical applications. Appl Surf Sci Adv 1:100023. https://doi.org/10.1016/j.apsadv.2020.100023

    Article  Google Scholar 

  30. Ghayour H, Abdellahi M, Ozada N, Jabbrzare S, Khandan A (2017) Hyperthermia application of zinc doped nickel ferrite nanoparticles. J Phys Chem Solids 111:464–472. https://doi.org/10.1016/j.jpcs.2017.08.018

    Article  CAS  Google Scholar 

  31. Diodati S, Pandolfo L, Caneschi A, Gialanella S, Gross S (2014) Green and low temperature synthesis of nanocrystalline transition metal ferrites by simple wet chemistry routes. Nano Res 7:1027–1042. https://doi.org/10.1007/s12274-014-0466-3

    Article  CAS  Google Scholar 

  32. El Nahrawy AM, Hemdan BA, Abou Hammad AB, Abia ALK, Bakr AM (2020) Microstructure and antimicrobial properties of bioactive cobalt Co-doped copper aluminosilicate nanocrystallines. SILICON 12:2317–2327. https://doi.org/10.1007/s12633-019-00326-y

    Article  CAS  Google Scholar 

  33. Irfan M, Azam S, Alshahrani T, Ul Haq B, Vu TV, Hussain S, Gul B (2020) Proposal of new spinel oxides semiconductors ZnGaO2, [ZnGaO2]:Mn3+ and Rh3+: ab-initio calculations and prospects for thermophysical and optoelectronic applications. J Mol Graph Model 101. https://doi.org/10.1016/j.jmgm.2020.107750

  34. Liu J, **ao J, Wang Z, Yuan H, Lu Z, Luo B, Tian E, Waterhouse GIN (2021) Structural and electronic engineering of Ir-doped Ni-(Oxy)hydroxide nanosheets for enhanced oxygen evolution activity. ACS Catal 11:5386–5395. https://doi.org/10.1021/ACSCATAL.1C00110/SUPPL_FILE/CS1C00110_SI_001.PDF

    Article  CAS  Google Scholar 

  35. Kumar P, Sharma V, Singh JP, Kumar A, Chahal S, Sachdev K, Chae KH, Kumar A, Asokan K, Kanjilal D (2019) Investigations on magnetic and electrical properties of Zn doped Fe2O3 nanoparticles and their correlation with local electronic structures. J Magn Magn Mater 489:165398. https://doi.org/10.1016/j.jmmm.2019.165398

    Article  CAS  Google Scholar 

  36. Park CM, Kim YM, Kim KH, Wang D, Su C, Yoon Y (2019) Potential utility of graphene-based nano spinel ferrites as adsorbent and photocatalyst for removing organic/inorganic contaminants from aqueous solutions: a mini review. Chemosphere 221:392–402. https://doi.org/10.1016/J.CHEMOSPHERE.2019.01.063

    Article  CAS  Google Scholar 

  37. Hcini S, Kouki N, Omri A, Dhahri A, Bouazizi ML (2018) Effect of sintering temperature on structural, magnetic, magnetocaloric and critical behaviors of Ni-Cd-Zn ferrites prepared using sol-gel method. J Magn Magn Mater 464:91–102. https://doi.org/10.1016/j.jmmm.2018.05.045

    Article  CAS  Google Scholar 

  38. Abou Hammad AB, Darwish AG, El Nahrawy AM (2020) Identification of dielectric and magnetic properties of core shell ZnTiO3/CoFe2O4 nanocomposites. Appl Phys A Mater Sci Process 126:504. https://doi.org/10.1007/s00339-020-03679-z

    Article  CAS  Google Scholar 

  39. Abou Hammad AB, Elzwawy A, Mansour AM, Alam MM, Asiri AM, Karim MR, Rahman MM, El Nahrawy AM (2020) Detection of 3,4-diaminotoluene based on Sr 0.3 Pb 0.7 TiO3/CoFe2O4 core/shell nanocomposite via an electrochemical approach. New J Chem 44:7941–7953. https://doi.org/10.1039/D0NJ01074J

    Article  CAS  Google Scholar 

  40. Kurian M, Thankachan S (2021) Structural diversity and applications of spinel ferrite core – shell nanostructures- a review. Open Ceram 8. https://doi.org/10.1016/J.OCERAM.2021.100179

  41. Elzwawy A, Mansour AM, Magar HS, Hammad ABA, Hassan RYA, El Nahrawy AM (2022) Exploring the structural and electrochemical sensing of wide bandgap calcium phosphate/CuxFe3-xO4 core-shell nanoceramics for H2O2 detection. Mater Today Commun 33:104574. https://doi.org/10.1016/j.mtcomm.2022.104574

    Article  CAS  Google Scholar 

  42. Thakur P, Chahar D, Taneja S, Bhalla N, Thakur A (2020) A review on MnZn ferrites: synthesis, characterization and applications. Ceram Int 46:15740–15763. https://doi.org/10.1016/J.CERAMINT.2020.03.287

    Article  CAS  Google Scholar 

  43. Ranga R, Kumar A, Kumari P, Singh P, Madaan V, Kumar K (2021) Ferrite application as an electrochemical sensor: a review. Mater Charact 178:111269. https://doi.org/10.1016/j.matchar.2021.111269

    Article  CAS  Google Scholar 

  44. Kefeni KK, Msagati TAM, Nkambule TT, Mamba BB (2020) Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater Sci Eng C 107:110314. https://doi.org/10.1016/j.msec.2019.110314

    Article  CAS  Google Scholar 

  45. Noormohamadi HR, Fat’hi MR, Ghaedi M (2018) Fabrication of polyethyleneimine modified cobalt ferrite as a new magnetic sorbent for the micro-solid phase extraction of tartrazine from food and water samples. J Colloid Interface Sci 531:343–351. https://doi.org/10.1016/j.jcis.2018.07.026

    Article  CAS  Google Scholar 

  46. Liu J, Zhang M, Guan L, Wang C, Shi L, ** Y, Han C, Wang J, Han Z (2021) Preparation of BT/GNP/PS/PVDF composites with controllable phase structure and dielectric properties. Polym Test 100. https://doi.org/10.1016/J.POLYMERTESTING.2021.107236

  47. Tripathy A, Nine MJ, Silva FS (2021) Biosensing platform on ferrite magnetic nanoparticles: synthesis, functionalization, mechanism and applications. Adv Colloid Interf Sci 290. https://doi.org/10.1016/J.CIS.2021.102380

  48. Barani M, Rahdar A, Mukhtar M, Razzaq S, Qindeel M, Hosseini Olam SA, Paiva-Santos AC, Ajalli N, Sargazi S, Balakrishnan D, Gupta AK, Pandey S (2022) Recent application of cobalt ferrite nanoparticles as a theranostic agent. Mater Today Chem 26:101131. https://doi.org/10.1016/j.mtchem.2022.101131

    Article  CAS  Google Scholar 

  49. Luo L, Li Q, Xu Y, Ding Y, Wang X, Deng D, Xu Y (2010) Amperometric glucose biosensor based on NiFe2O4 nanoparticles and chitosan. Sensors Actuators B Chem 145:293–298. https://doi.org/10.1016/J.SNB.2009.12.018

    Article  CAS  Google Scholar 

  50. Shi C, Qin H, Zhao M, Wang X, Li L, Hu J (2014) Investigation on electrical transport, CO sensing characteristics and mechanism for nanocrystalline La1−xCaxFeO3 sensors. Sensors Actuators B Chem 190:25–31. https://doi.org/10.1016/J.SNB.2013.08.029

    Article  CAS  Google Scholar 

  51. Pandey M, Mishra P, Saha D, Sengupta K, Jain K, Islam SS (2013) Nanoporous alumina (γ- and α-phase) gel cast thick film for the development of trace moisture sensor. J Sol-Gel Sci Technol 68:317–323. https://doi.org/10.1007/S10971-013-3171-X/TABLES/2

    Article  CAS  Google Scholar 

  52. Pal S, Das A, Nandy S, Kar R, Ghosh J (2019) Development of a near-infrared tunable diode laser absorption spectrometer for trace moisture measurements in helium gas. Rev Sci Instrum 90:103105. https://doi.org/10.1063/1.5113968

    Article  CAS  Google Scholar 

  53. Petrila I, Tudorache F (2013) Humidity sensor applicative material based on copper-zinc-tungsten spinel ferrite. Mater Lett 108:129–133. https://doi.org/10.1016/J.MATLET.2013.06.066

    Article  CAS  Google Scholar 

  54. Boytsova O, Klimenko A, Lebedev V, Lukashin A, Eliseev A (2015) Nanomechanical humidity detection through porous alumina cantilevers. Beilstein J Nanotechnol 6:1332–1337. https://doi.org/10.3762/BJNANO.6.137

    Article  CAS  Google Scholar 

  55. Wu K, Guan X, Hou Z, Liu L, Zhao H, Liu S, Fei T, Zhang T (2021) Humidity sensors based on metal organic frameworks derived polyelectrolyte films. J Colloid Interface Sci 602:646–653. https://doi.org/10.1016/J.JCIS.2021.06.064

    Article  CAS  Google Scholar 

  56. Saha D, Das S (2018) Development of fullerene modified metal oxide thick films for moisture sensing application. Mater Today Proc 5:9817–9825. https://doi.org/10.1016/J.MATPR.2017.10.172

    Article  CAS  Google Scholar 

  57. Anupama AV, Keune W, Sahoo B (2017) Thermally induced phase transformation in multi-phase iron oxide nanoparticles on vacuum annealing. J Magn Magn Mater 439:156–166. https://doi.org/10.1016/J.JMMM.2017.04.094

    Article  CAS  Google Scholar 

  58. Harish KN, Bhojya Naik HS, Prashanth Kumar PN, Viswanath R (2012) Synthesis, enhanced optical and photocatalytic study of Cd–Zn ferrites under sunlight. Cat Sci Technol 2:1033–1039. https://doi.org/10.1039/C2CY00503D

    Article  CAS  Google Scholar 

  59. Kumar P, Pathak S, Singh A, Kuldeep KH, Wang X, Basheed GA, Pant RP (2021) Optimization of cobalt concentration for improved magnetic characteristics and stability of CoxFe3-xO4 mixed ferrite nanomagnetic fluids. Mater Chem Phys 265:124476. https://doi.org/10.1016/J.MATCHEMPHYS.2021.124476

    Article  CAS  Google Scholar 

  60. Dai H, Gu L, Li T, Liu D, Chen Z, Cao X, Wang B (2019) Investigations of Ti-substituted CuFeO2 ceramics on the structure, defects, the local electron density and magnetic properties. J Magn Magn Mater 484:279–285. https://doi.org/10.1016/J.JMMM.2019.04.019

    Article  CAS  Google Scholar 

  61. Samanta A, Goswami MN, Mahapatra PK (2020) Fe-doped ZnO nanoparticles as novel photonic and multiferroic semiconductor. Mater Chem Phys 240:122180. https://doi.org/10.1016/j.matchemphys.2019.122180

    Article  CAS  Google Scholar 

  62. El Nahrawy AM, Hemdan BA, Mansour AM, Elzwawy A, Abou Hammad AB (2021) Integrated use of nickel cobalt aluminoferrite/Ni2+ nano-crystallites supported with SiO2 for optomagnetic and biomedical applications. Mater Sci Eng B 274:115491. https://doi.org/10.1016/J.MSEB.2021.115491

    Article  Google Scholar 

  63. Nam NH, Luong NH (2019) Nanoparticles: synthesis and applications. In: Materials for biomedical engineering. Elsevier, Amsterdam, pp 211–240

    Chapter  Google Scholar 

  64. Kaur N, Kaur M (2014) Comparative studies on impact of synthesis methods on structural and magnetic properties of magnesium ferrite nanoparticles. Process Appl Ceram 8:137–143. https://doi.org/10.2298/PAC1403137K

    Article  Google Scholar 

  65. Annie Vinosha P, Jerome Das S (2018) Investigation on the role of pH for the structural, optical and magnetic properties of cobalt ferrite nanoparticles and its effect on the photo-Fenton activity. Mater Today Proc 5:8662–8671. https://doi.org/10.1016/J.MATPR.2017.12.291

    Article  CAS  Google Scholar 

  66. Ghasemi I, Haghighi M, Talati A, Abbasi Asl E (2022) Facile sono-design of 3D flower-like NiO–CuFe2O4 nano-heterostructure as an efficient and magnetically separable catalyst for photodegradation of organic dyes. J Clean Prod 335:130355. https://doi.org/10.1016/j.jclepro.2022.130355

    Article  CAS  Google Scholar 

  67. Wang G, Gao Z, Wan G, Lin S, Yang P, Qin Y (2014) High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res 7:704–716. https://doi.org/10.1007/S12274-014-0432-0/METRICS

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amany M. El Nahrawy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abou Hammad, A.B., El Nahrawy, A.M. (2024). Spinel Sensors and Biosensors. In: Ali, G.A.M., Chong, K.F., Makhlouf, A.S.H. (eds) Handbook of Nanosensors. Springer, Cham. https://doi.org/10.1007/978-3-031-16338-8_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16338-8_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16338-8

  • Online ISBN: 978-3-031-16338-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation