Fundamental in Polymer-/Nanohybrid-Based Nanorobotics for Theranostics

  • Chapter
  • First Online:
Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine
  • 454 Accesses

Abstract

Nanotechnology offers various applications in disciplines such as nanomedicine, diagnostics, food packaging, and energy. It provides a platform for fabricating materials with enhanced capabilities and multiple designs on a nanoscale. Nanorobots are basically a subset of nanotechnology concerned with designing and constructing devices at the atomic, molecular, and cellular levels. These tiny robots can enter cells for diagnosis, treatment, and surgery. Nanorobots are built with careful research to incorporate the desired qualities based on their future use, given their wide range of applications. Micelles, dendrimers, magnetic nanoparticles, nanogels, and hybrid conjugates are a few nanorobots discussed in this chapter. The biocompatibility of fabricated materials is one of the essential characteristics for biomedical and clinical applications. The proposed material should be cytotoxic-free for use as nanorobots in biomedical applications. Unique features of polymer-nanohybrid nanorobotics enable them to play a vital role in various sectors, including tissue engineering and cancer therapy. Many recent investigations in theranostics have focused on polymer-nanomaterial nanorobots. In this chapter, we have highlighted the fundamentals of polymers and their combinations with nanomaterials, unique features of nanorobots, and applications in theranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd Ellah NH, Abouelmagd SA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv. 2017;14(2):201–14.

    Article  CAS  Google Scholar 

  • Abdullah Al N, Lee J-E, In I, Lee H, Lee KD, Jeong JH, Park SY. Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol Pharm. 2013;10(10):3736–44.

    Article  Google Scholar 

  • Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci. 2021;16(3):280–306.

    Article  Google Scholar 

  • Ahsan F, Ansari TM, Usmani S, Bagga P. An insight on silk protein Sericin: from processing to biomedical application. Drug Res (Stuttg). 2018;68(06):317–27.

    Article  CAS  Google Scholar 

  • Aldana AA, Valente F, Dilley R, Doyle B. Development of 3D bioprinted GelMA-alginate hydrogels with tunable mechanical properties. Bioprinting. 2021;21:e00105.

    Article  Google Scholar 

  • Alijotas-Reig J, Hindié M, Kandhaya-Pillai R, Miro-Mur F. Bioengineered hyaluronic acid elicited a nonantigenic T cell activation: implications from cosmetic medicine and surgery to nanomedicine. J Biomed Mater Res A. 2010;95A(1):180–90.

    Article  CAS  Google Scholar 

  • Asadi N, Del Bakhshayesh AR, Davaran S, Akbarzadeh A. Common biocompatible polymeric materials for tissue engineering and regenerative medicine. Mater Chem Phys. 2020;242:122528.

    Article  CAS  Google Scholar 

  • Bajaj P, Singh NS, Virdi JS. Escherichia coli β-lactamases: what really matters. Front Microbiol. 2016;7:417.

    Article  Google Scholar 

  • Bauleth-Ramos T, Shih T-Y, Shahbazi M-A, Najibi AJ, Mao AS, Liu D, Granja P, Santos HA, Sarmento B, Mooney DJ. Acetalated dextran nanoparticles loaded into an injectable alginate Cryogel for combined chemotherapy and cancer vaccination. Adv Funct Mater. 2019;29(35):1903686.

    Article  Google Scholar 

  • Bello AB, Kim D, Kim D, Park H, Lee S-H. Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng Part B Rev. 2020;26(2):164–80.

    Article  CAS  Google Scholar 

  • Bloemen M, Van Stappen T, Willot P, Lammertyn J, Koeckelberghs G, Geukens N, Gils A, Verbiest T. Heterobifunctional PEG ligands for bioconjugation reactions on iron oxide nanoparticles. PLoS One. 2014;9(10):e109475.

    Article  Google Scholar 

  • Boland E, Espy P, Bowlin G. Tissue engineering scaffolds. In: Wenk GE, Bowlin GL, editors. Encyclopaedia of biomaterials and biomedical engineering. Richmong; 2004. p. 1633–5. CRC Press.

    Google Scholar 

  • Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev. 2001;14(2):244–69.

    Article  CAS  Google Scholar 

  • Brandt JV, Piazza RD, dos Santos CC, Vega-Chacón J, Amantéa BE, Pinto GC, Magnani M, Piva HL, Tedesco AC, Primo FL, Jafelicci M, Marques RFC. Synthesis and colloidal characterization of folic acid-modified PEG-b-PCL Micelles for methotrexate delivery. Colloids Surf B: Biointerfaces. 2019;177:228–34.

    Article  CAS  Google Scholar 

  • Campiglio CE, Contessi Negrini N, Farè S, Draghi L. Cross-linking strategies for electrospun gelatin scaffolds. Materials. 2019;12(15):2476.

    Article  CAS  Google Scholar 

  • Capehart SL, ElSohly AM, Obermeyer AC, Francis MB. Bioconjugation of gold nanoparticles through the oxidative coupling of ortho-Aminophenols and anilines. Bioconjug Chem. 2014;25(10):1888–92.

    Article  CAS  Google Scholar 

  • Chacko RT, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels: A versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev. 2012;64(9):836–51.

    Article  CAS  Google Scholar 

  • Chambre L, Degirmenci A, Sanyal R, Sanyal A. Multi-functional Nanogels as Theranostic platforms: exploiting reversible and nonreversible linkages for targeting, imaging, and drug delivery. Bioconjug Chem. 2018;29(6):1885–96.

    Article  CAS  Google Scholar 

  • Chen H, Zhang H, Wang Z. A ratiometric fluorescent probe based on peptide modified MnFe2O4 nanoparticles for matrix metalloproteinase-7 activity detection in vitro and in vivo. Analyst. 2022;147(8):1581–8.

    Article  CAS  Google Scholar 

  • Cherkasov VR, Mochalova EN, Babenyshev AV, Vasilyeva AV, Nikitin PI, Nikitin MP. Nanoparticle beacons: supersensitive smart materials with on/off-switchable affinity to biomedical targets. ACS Nano. 2020;14(2):1792–803.

    Article  CAS  Google Scholar 

  • Coleman RJ, Lawrie G, Lambert LK, Whittaker M, Jack KS, Grøndahl L. Phosphorylation of alginate: synthesis, characterization, and evaluation of in vitro mineralization capacity. Biomacromolecules. 2011;12(4):889–97.

    Article  CAS  Google Scholar 

  • Dai H, Shen Q, Shao J, Wang W, Gao F, Dong X. Small molecular NIR-II fluorophores for cancer phototheranostics. The Innovation. 2021;2(1):100082.

    Article  CAS  Google Scholar 

  • Dash TK, Konkimalla VB. Polymeric modification and its implication in drug delivery: poly-ε-caprolactone (PCL) as a model polymer. Mol Pharm. 2012;9(9):2365–79.

    Article  CAS  Google Scholar 

  • Debele TA, Mekuria SL, Lin S-Y, Tsai H-C. Synthesis and characterization of bioreducible heparin-polyethyleneimine nanogels: application as imaging-guided photosensitizer delivery vehicle in photodynamic therapy. RSC Adv. 2016;6(18):14692–704.

    Article  CAS  Google Scholar 

  • Diken ME, Koçer Kizilduman B, Doğan S, Doğan M. Antibacterial and antioxidant phenolic compounds loaded PCL biocomposites for active food packaging application. J Appl Polym Sci. 2022;139(25):e52423.

    Article  CAS  Google Scholar 

  • Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and synthetic polymers for bone scaffolds optimization. Polymers. 2020;12(4):905.

    Article  CAS  Google Scholar 

  • Dotse E, Lim KH, Wang M, Wijanarko KJ, Chow KT. An immunological perspective of circulating tumor cells as diagnostic biomarkers and therapeutic targets. Life (Basel). 2022;12(2):323.

    CAS  Google Scholar 

  • Eiselt P, Yeh J, Latvala RK, Shea LD, Mooney DJ. Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials. 2000;21(19):1921–7.

    Article  CAS  Google Scholar 

  • Eltaweil AS, Abd El-Monaem EM, Elshishini HM, El-Aqapa HG, Hosny M, Abdelfatah AM, Ahmed MS, Hammad EN, El-Subruiti GM, Fawzy M, Omer AM. Recent developments in alginate-based adsorbents for removing phosphate ions from wastewater: a review. RSC Adv. 2022;12(13):8228–48.

    Article  CAS  Google Scholar 

  • Fabbri M, García-Fernández L, Vázquez-Lasa B, Soccio M, Lotti N, Gamberini R, Rimini B, Munari A, San Román J. Micro-structured 3D-electrospun scaffolds of biodegradable block copolymers for soft tissue regeneration. Eur Polym J. 2017;94:33–42.

    Article  CAS  Google Scholar 

  • Felgueiras HP, Wang LM, Ren KF, Querido MM, ** Q, Barbosa MA, Ji J, Martins MCL. Octadecyl chains immobilized onto hyaluronic acid coatings by thiol–ene “click chemistry” increase the surface antimicrobial properties and prevent platelet adhesion and activation to polyurethane. ACS Appl Mater Interfaces. 2017;9(9):7979–89.

    Article  CAS  Google Scholar 

  • Flejszar M, Chmielarz P. Surface-initiated atom transfer radical polymerization for the preparation of well-defined organic–inorganic hybrid nanomaterials. Materials. 2019;12(18):3030.

    Article  CAS  Google Scholar 

  • Franceschi RT, Iyer BS, Cui Y. Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner Res. 1994;9(6):843–54.

    Article  CAS  Google Scholar 

  • Funkhouser J. Reinventing pharma: the theranostic revolution. Curr Drug Discov. 2002;2:17–9.

    Google Scholar 

  • Gheorghita Puscaselu R, Lobiuc A, Dimian M, Covasa M. Alginate: from food industry to biomedical applications and Management of Metabolic Disorders. Polymers. 2020;12(10):2417.

    Article  Google Scholar 

  • Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release. 2021;332:312–36.

    Article  CAS  Google Scholar 

  • Ghobeira R, Asadian M, Vercruysse C, Declercq H, De Geyter N, Morent R. Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. Polymer. 2018;157:19–31.

    Article  CAS  Google Scholar 

  • Goh EJ, Kim KS, Kim YR, Jung HS, Beack S, Kong WH, Scarcelli G, Yun SH, Hahn SK. Bioimaging of hyaluronic acid derivatives using nanosized carbon dots. Biomacromolecules. 2012;13(8):2554–61.

    Article  CAS  Google Scholar 

  • Gupta J, Hassan PA, Barick KC. Core-shell Fe3O4@ZnO nanoparticles for magnetic hyperthermia and bio-imaging applications. AIP Adv. 2021;11(2):025207.

    Article  CAS  Google Scholar 

  • Hajba L, Guttman A. The use of magnetic nanoparticles in cancer theranostics: toward handheld diagnostic devices. Biotechnol Adv. 2016;34(4):354–61.

    Article  CAS  Google Scholar 

  • He H, Zhang X, Du L, Ye M, Lu Y, Xue J, Wu J, Shuai X. Molecular imaging nanoprobes for theranostic applications. Adv Drug Deliv Rev. 2022;186:114320.

    Article  CAS  Google Scholar 

  • Hermanson GT. Bioconjugate techniques. Academic; 2013.

    Google Scholar 

  • Huang L, Cheng YY, Koo PL, Lee KM, Qin L, Cheng JC, Kumta SM. The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures. J Biomed Mater Res A. 2003a;66(4):880–4.

    Article  CAS  Google Scholar 

  • Huang YC, Connell M, Park Y, Mooney DJ, Rice KG. Fabrication and in vitro testing of polymeric delivery system for condensed DNA. J Biomed Mater Res A. 2003b;67(4):1384–92.

    Article  Google Scholar 

  • Huang J, Bu L, **e J, Chen K, Cheng Z, Li X, Chen X. Effects of nanoparticle size on cellular uptake and liver MRI with Polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano. 2010;4(12):7151–60.

    Article  CAS  Google Scholar 

  • Jang Y, Cha C, Jung J, Oh J. Interfacial compression-dependent merging of two miscible microdroplets in an asymmetric cross-junction for In situ microgel formation. Macromol Res. 2018;26(12):1143–9.

    Article  CAS  Google Scholar 

  • Jiang W, Shang B, Li L, Zhang S, Zhen Y. Construction of a genetically engineered chimeric apoprotein consisting of sequences derived from lidamycin and neocarzinostatin. Anti-Cancer Drugs. 2016;27(1):24.

    Article  CAS  Google Scholar 

  • Jiang Y, Cui D, Fang Y, Zhen X, Upputuri PK, Pramanik M, Ding D, Pu K. Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. Biomaterials. 2017;145:168–77.

    Article  CAS  Google Scholar 

  • Jones EM, Cochrane CA, Percival SL. The effect of pH on the extracellular matrix and biofilms. Adv Wound Care (New Rochelle). 2015;4(7):431–9.

    Article  Google Scholar 

  • Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today. 2008;13(23):1099–106.

    Article  CAS  Google Scholar 

  • Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem. 2011;22(10):1879–903.

    Article  CAS  Google Scholar 

  • Kim J, Kim KS, Jiang G, Kang H, Kim S, Kim B-S, Park MH, Hahn SK. In vivo real-time bioimaging of hyaluronic acid derivatives using quantum dots. Biopolymers. 2008;89(12):1144–53.

    Article  CAS  Google Scholar 

  • Kim H, Shin M, Han S, Kwon W, Hahn SK. Hyaluronic acid derivatives for translational medicines. Biomacromolecules. 2019;20(8):2889–903.

    Article  CAS  Google Scholar 

  • Krasia-Christoforou T, Georgiou TK. Polymeric theranostics: using polymer-based systems for simultaneous imaging and therapy. J Mater Chem B. 2013;1(24):3002–25.

    Article  CAS  Google Scholar 

  • Kumbar SG, James R, Nukavarapu SP, Laurencin CT. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater. 2008;3(3):034002.

    Article  CAS  Google Scholar 

  • Lai P-S, Lou P-J, Peng C-L, Pai C-L, Yen W-N, Huang M-Y, Young T-H, Shieh M-J. Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J Control Release. 2007;122(1):39–46.

    Article  CAS  Google Scholar 

  • Lammers T, Subr V, Ulbrich K, Hennink WE, Storm G, Kiessling F. Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy. Nano Today. 2010a;5(3):197–212.

    Article  CAS  Google Scholar 

  • Lammers T, Kiessling F, Hennink WE, Storm G. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm. 2010b;7(6):1899–912.

    Article  CAS  Google Scholar 

  • Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev. 2012;41(7):2575–89.

    Article  CAS  Google Scholar 

  • Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med. 2007;13(1):95–9.

    Article  CAS  Google Scholar 

  • Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev. 2008;14(1):61–86.

    Article  CAS  Google Scholar 

  • Li W, Zhan P, De Clercq E, Lou H, Liu X. Current drug research on PEGylation with small molecular agents. Prog Polym Sci. 2013;38(3):421–44.

    Article  CAS  Google Scholar 

  • Li F, Liang Z, Ling D. Smart organic-inorganic Nanogels for Activatable Theranostics. Curr Med Chem. 2019;26(8):1366–76.

    Article  CAS  Google Scholar 

  • Li Z, Guo J, Zhang M, Li G, Hao L. Gadolinium-coated mesoporous silica nanoparticle for magnetic resonance imaging. Front Chem. 2022;10:837032.

    Article  CAS  Google Scholar 

  • Lin X, Zhou M, Wang S, Lou H, Yang D, Qiu X. Synthesis, structure, and dispersion property of a novel lignin-based Polyoxyethylene ether from Kraft lignin and poly(ethylene glycol). ACS Sustain Chem Eng. 2014;2(7):1902–9.

    Article  CAS  Google Scholar 

  • Lin K, Zhang D, Macedo MH, Cui W, Sarmento B, Shen G. Advanced collagen-based biomaterials for regenerative biomedicine. Adv Funct Mater. 2019;29(3):1804943.

    Article  Google Scholar 

  • Loman-Cortes P, Binte Huq T, Vivero-Escoto JL. Use of polyhedral oligomeric Silsesquioxane (POSS) in drug delivery, photodynamic therapy and bioimaging. Molecules. 2021;26(21):6453.

    Article  CAS  Google Scholar 

  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97.

    Article  CAS  Google Scholar 

  • Mallakpour S, Azadi E, Hussain CM. Chitosan/carbon nanotube hybrids: recent progress and achievements for industrial applications. New J Chem. 2021;45(8):3756–77.

    Article  CAS  Google Scholar 

  • Mark JE. The polymer data handbook. Oxford University Press/University of Cincinnati; 1999.

    Google Scholar 

  • Martins C, Sousa F, Araújo F, Sarmento B. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthc Mater. 2018;7(1):1701035.

    Article  CAS  Google Scholar 

  • Martins I, Tomás H, Lahoz F, Rodrigues J. Engineered fluorescent carbon dots and G4-G6 PAMAM dendrimer Nanohybrids for bioimaging and gene delivery. Biomacromolecules. 2021;22(6):2436–50.

    Article  CAS  Google Scholar 

  • Mattheolabakis G, Milane L, Singh A, Amiji MM. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target. 2015;23(7–8):605–18.

    Article  CAS  Google Scholar 

  • Meyer K, Palmer JW. The polysaccharide of the vitreous humor. J Biol Chem. 1934;107:629–34.

    Article  CAS  Google Scholar 

  • Meyer F, Wardale J, Best S, Cameron R, Rushton N, Brooks R. Effects of lactic acid and glycolic acid on human osteoblasts: a way to understand PLGA involvement in PLGA/calcium phosphate composite failure. J Orthop Res. 2012;30(6):864–71.

    Article  CAS  Google Scholar 

  • Mignani S, Rodrigues J, Tomas H, Caminade A-M, Laurent R, Shi X, Majoral J-P. Recent therapeutic applications of the theranostic principle with dendrimers in oncology. Sci China Mater. 2018;61(11):1367–86.

    Article  CAS  Google Scholar 

  • Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33–64.

    Article  CAS  Google Scholar 

  • Mohammed L, Ragab D, Gomaa H. Bioactivity of hybrid polymeric magnetic nanoparticles and their applications in drug delivery. Curr Pharm Des. 2016;22(22):3332–52.

    Article  CAS  Google Scholar 

  • Mora-Boza A, Mancipe Castro LM, Schneider RS, Han WM, García AJ, Vázquez-Lasa B, San Román J. Microfluidics generation of chitosan microgels containing glycerylphytate crosslinker for in situ human mesenchymal stem cells encapsulation. Mater Sci Eng C. 2021;120:111716.

    Article  CAS  Google Scholar 

  • Mwai LM, Kyama MC, Ngugi CW, Walong E. Bioconjugation of AuNPs with HPV 16/18 E6 antibody through physical adsorption technique. bioRxiv. 2020; https://doi.org/10.1101/2020.01.21.899930.

  • Nii T, Kuwahara T, Makino K, Tabata Y. A co-culture system of three-dimensional tumor-associated macrophages and three-dimensional cancer-associated fibroblasts combined with biomolecule release for cancer cell migration. Tissue Eng A. 2020;26(23–24):1272–82.

    Article  CAS  Google Scholar 

  • Nolan K, Millet Y, Ricordi C, Stabler CL. Tissue engineering and biomaterials in regenerative medicine. Cell Transplant. 2008;17(3):241–3.

    Article  Google Scholar 

  • Noor NQIM, Razali RS, Ismail NK, Ramli RA, Razali UHM, Bahauddin AR, Zaharudin N, Rozzamri A, Bakar J, Shaarani SM. Application of green Technology in Gelatin Extraction: a review. Processes. 2021;9(12):2227.

    Article  CAS  Google Scholar 

  • Nosoudi N, Oommen AJ, Stultz S, Jordan M, Aldabel S, Hohne C, Mosser J, Archacki B, Turner A, Turner P. Electrospinning live cells using gelatin and pullulan. Bioengineering. 2020;7(1):21.

    Article  CAS  Google Scholar 

  • Oliveira ÉR, Nie L, Podstawczyk D, Allahbakhsh A, Ratnayake J, Brasil DL, Shavandi A. Advances in growth factor delivery for bone tissue engineering. Int J Mol Sci. 2021;22(2):903.

    Article  CAS  Google Scholar 

  • Pacheco N, Garnica-Gonzalez M, Gimeno M, Bárzana E, Trombotto S, David L, Shirai K. Structural characterization of chitin and chitosan obtained by biological and chemical methods. Biomacromolecules. 2011;12(9):3285–90.

    Article  CAS  Google Scholar 

  • Palsson B, Bhatia SN. Tissue engineering. Upper Saddle River: Pearson Prentice Hall; 2004.

    Google Scholar 

  • Parisi OI, Scrivano L, Sinicropi MS, Picci N, Puoci F. Engineered polymer-based nanomaterials for diagnostic, therapeutic and theranostic applications. Mini Rev Med Chem. 2016;16(9):754–61.

    Article  CAS  Google Scholar 

  • Park CH, Woo KM. Fibrin-based biomaterial applications in tissue engineering and regenerative medicine. In: Noh I, editor. Biomimetic medical materials: from nanotechnology to 3D bioprinting. Singapore: Springer Singapore; 2018. p. 253–61.

    Chapter  Google Scholar 

  • Park H, Saravanakumar G, Kim J, Lim J, Kim WJ. Tumor microenvironment sensitive Nanocarriers for bioimaging and therapeutics. Adv Healthc Mater. 2021;10(5):2000834.

    Article  CAS  Google Scholar 

  • Patel DK, Dutta SD, Ganguly K, Lim K-T. Multifunctional bioactive chitosan/cellulose nanocrystal scaffolds eradicate bacterial growth and sustain drug delivery. Int J Biol Macromol. 2021;170:178–88.

    Article  CAS  Google Scholar 

  • Patel DK, Ganguly K, Hexiu J, Dutta SD, Patil TV, Lim K-T. Functionalized chitosan/spherical nanocellulose-based hydrogel with superior antibacterial efficiency for wound healing. Carbohydr Polym. 2022;284:119202.

    Article  CAS  Google Scholar 

  • Patil TV, Patel DK, Dutta SD, Ganguly K, Santra TS, Lim K-T. Nanocellulose, a versatile platform: from the delivery of active molecules to tissue engineering applications. Bioactive Mater. 2022;9:566–89.

    Article  CAS  Google Scholar 

  • Pelegri-O’Day EM, Lin E-W, Maynard HD. Therapeutic protein–polymer conjugates: advancing beyond PEGylation. J Am Chem Soc. 2014;136(41):14323–32.

    Article  Google Scholar 

  • Piao Y, You H, Xu T, Bei H-P, Piwko IZ, Kwan YY, Zhao X. Biomedical applications of gelatin methacryloyl hydrogels. Eng Regen. 2021;2:47–56.

    Google Scholar 

  • Politi J, De Stefano L, Rea I, Gravagnuolo AM, Giardina P, Methivier C, Casale S, Spadavecchia J. One-pot synthesis of a gold nanoparticle–Vmh2 hydrophobin nanobiocomplex for glucose monitoring. Nanotechnology. 2016;27(19):195701.

    Article  Google Scholar 

  • Prasad A, Kandasubramanian B. Fused deposition processing polycaprolactone of composites for biomedical applications. Polym-Plast Technol Mater. 2019;58(13):1365–98.

    CAS  Google Scholar 

  • Puertas-Bartolomé M, Mora-Boza A, García-Fernández L. Emerging biofabrication techniques: a review on natural polymers for biomedical applications. Polymers. 2021;13(8):1209.

    Article  Google Scholar 

  • Ren X, Liu W, Zhou H, Wei J, Mu C, Wan Y, Yang X, Nie A, Liu Z, Yang X, Luo Z. Biodegradable 2D GeP nanosheets with high photothermal conversion efficiency for multimodal cancer theranostics. Chem Eng J. 2022;431:134176.

    Article  CAS  Google Scholar 

  • Ruan J, Qian H. Recent development on controlled synthesis of Mn-based nanostructures for bioimaging and cancer therapy. Adv Ther. 2021;4(5):2100018.

    Article  CAS  Google Scholar 

  • Russell AJ, Baker SL, Colina CM, Figg CA, Kaar JL, Matyjaszewski K, Simakova A, Sumerlin BS. Next generation protein-polymer conjugates. AICHE J. 2018;64(9):3230–45.

    Article  CAS  Google Scholar 

  • Sabir F, Asad MI, Qindeel M, Afzal I, Dar MJ, Shah KU, Zeb A, Khan GM, Ahmed N, Din F-U. Polymeric nanogels as versatile Nanoplatforms for biomedical applications. J Nanomater. 2019;2019:1526186.

    Article  Google Scholar 

  • Saenz-Mendoza AI, Zamudio-Flores PB, García-Anaya MC, Velasco CR, Acosta-Muñiz CH, de Jesús Ornelas-Paz J, Hernández-González M, Vargas-Torres A, Aguilar-González MÁ, Salgado-Delgado R. Characterization of insect chitosan films from Tenebrio molitor and Brachystola magna and its comparison with commercial chitosan of different molecular weights. Int J Biol Macromol. 2020;160:953–63.

    Article  CAS  Google Scholar 

  • Sagar V, Vashist A, Gupta R, Nair M. Chapter 15: Nanogels for biomedical applications: challenges and prospects. In: Nanogels for biomedical applications. The Royal Society of Chemistry; 2018. p. 290–300.

    Google Scholar 

  • Sanz-Horta R, Matesanz A, Jorcano JL, Velasco D, Acedo P, Gallardo A, Reinecke H, Elvira C. Preparation and characterization of plasma-derived fibrin hydrogels modified by alginate di-aldehyde. Int J Mol Sci. 2022;23(8):4296.

    Article  CAS  Google Scholar 

  • Schwarz M, Buehler A, Aguirre J, Ntziachristos V. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo. J Biophotonics. 2016;9(1–2):55–60.

    Article  CAS  Google Scholar 

  • Seeto WJ, Tian Y, Pradhan S, Kerscher P, Lipke EA. Rapid production of cell-laden microspheres using a flexible microfluidic encapsulation platform. Small. 2019;15(47):1902058.

    Article  CAS  Google Scholar 

  • Sell SA, Wolfe PS, Garg K, McCool JM, Rodriguez IA, Bowlin GL. The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers. 2010;2(4):522–53.

    Article  CAS  Google Scholar 

  • Sepideh K, Hamed A. Nanogels: chemical approaches to preparation. In: Concise Encyclopedia of biomedical polymers and polymeric biomaterials. CRC Press; 2017.

    Google Scholar 

  • Sharath Kumar KS, Girish YR, Ashrafizadeh M, Mirzaei S, Rakesh KP, Hossein Gholami M, Zabolian A, Hushmandi K, Orive G, Kadumudi FB, Dolatshahi-Pirouz A, Thakur VK, Zarrabi A, Makvandi P, Rangappa KS. AIE-featured tetraphenylethylene nanoarchitectures in biomedical application: bioimaging, drug delivery and disease treatment. Coord Chem Rev. 2021;447:214135.

    Article  CAS  Google Scholar 

  • Siafaka PI, Üstündağ Okur N, Karavas E, Bikiaris DN. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: current status and uses. Int J Mol Sci. 2016;17(9):1440.

    Article  Google Scholar 

  • Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: a review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci. 2021;16(1):24–46.

    Article  Google Scholar 

  • Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S. PCL-based composite scaffold matrices for tissue engineering applications. Mol Biotechnol. 2018;60(7):506–32.

    Article  CAS  Google Scholar 

  • Sindhu RK, Gupta R, Wadhera G, Kumar P. Modern herbal Nanogels: formulation, delivery methods, and applications. Gels. 2022;8(2):97.

    Article  CAS  Google Scholar 

  • Singh N, Son S, An J, Kim I, Choi M, Kong N, Tao W, Kim JS. Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chem Soc Rev. 2021;50(23):12883–96.

    Article  CAS  Google Scholar 

  • Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-ϵ-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278(1):1–23.

    Article  CAS  Google Scholar 

  • Song H-T, Choi J-S, Huh Y-M, Kim S, Jun Y-W, Suh J-S, Cheon J. Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. J Am Chem Soc. 2005;127(28):9992–3.

    Article  CAS  Google Scholar 

  • Song B, Li M, Ren J, Liu Q, Wen X, Zhang W, Yuan J. A multifunctional nanoprobe based on europium(iii) complex–Fe3O4 nanoparticles for bimodal time-gated luminescence/magnetic resonance imaging of cancer cells in vitro and in vivo. New J Chem. 2022; https://doi.org/10.1039/d2nj00511e.

  • Stoffels I, Morscher S, Helfrich I, Hillen U, Leyh J, Burton NC, Sardella TCP, Claussen J, Poeppel TD, Bachmann HS, Roesch A, Griewank K, Schadendorf D, Gunzer M, Klode J. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci Transl Med. 2015;7(317):317ra199.

    Article  Google Scholar 

  • Sulttan S, Rohani S. Controlled drug release of smart magnetic self-assembled micelle, kinetics and transport mechanisms. J Pharm Sci. 2022; https://doi.org/10.1016/j.xphs.2022.03.023.

  • Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc. 2002;124(28):8204–5.

    Article  CAS  Google Scholar 

  • Tebaldi ML, Charan H, Mavliutova L, Böker A, Glebe U. Dual-stimuli sensitive hybrid materials: ferritin–PDMAEMA by grafting-from polymerization. Macromol Chem Phys. 2017;218(11):1600529.

    Article  Google Scholar 

  • Thorat ND, Tofail SAM, Rechenberg BV, Townley H, Brennan G, Silien C, Yadav HM, Steffen T, Bauer J. Physically stimulated nanotheranostics for next generation cancer therapy: focus on magnetic and light stimulations. Appl Phys Rev. 2019;6(4):041306.

    Article  CAS  Google Scholar 

  • Tian X, Zhang L, Yang M, Bai L, Dai Y, Yu Z, Pan Y. Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. WIREs Nanomed Nanobiotechnol. 2018;10(1):e1476.

    Article  Google Scholar 

  • Tomić SL, Nikodinović-Runić J, Vukomanović M, Babić MM, Vuković JS. Novel hydrogel scaffolds based on alginate, gelatin, 2-hydroxyethyl methacrylate, and hydroxyapatite. Polymers. 2021;13(6):932.

    Article  Google Scholar 

  • Tutar R, Motealleh A, Khademhosseini A, Kehr NS. Functional nanomaterials on 2D surfaces and in 3D nanocomposite hydrogels for biomedical applications. Adv Funct Mater. 2019;29(46):1904344.

    Article  CAS  Google Scholar 

  • Uzunalli G, Guler MO. Peptide gels for controlled release of proteins. Ther Deliv. 2020;11(3):193–211.

    Article  CAS  Google Scholar 

  • Vashist A, Vashist A, Gupta YK, Ahmad S. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B. 2014;2(2):147–66.

    Article  CAS  Google Scholar 

  • Vasile C, Pamfil D, Stoleru E, Baican M. New developments in medical applications of hybrid hydrogels containing natural polymers. Molecules. 2020;25(7):1539.

    Article  CAS  Google Scholar 

  • Veronese FM. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials. 2001;22(5):405–17.

    Article  CAS  Google Scholar 

  • Wang J-Z, You M-L, Ding Z-Q, Ye W-B. A review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers. Mater Sci Eng C. 2019;97:1021–35.

    Article  CAS  Google Scholar 

  • Wang H, Picchio ML, Calderón M. One stone, many birds: recent advances in functional nanogels for cancer nanotheranostics. WIREs Nanomed Nanobiotechnol. 2022;14(4):e1791.

    Article  CAS  Google Scholar 

  • Warenius HM. Technological challenges of theranostics in oncology. Expert Opin Med Diagn. 2009;3(4):381–93.

    Article  CAS  Google Scholar 

  • Wennink JWH, Signori F, Karperien M, Bronco S, Feijen J, Dijkstra PJ. Introducing small cationic groups into 4-armed PLLA–PEG copolymers leads to preferred micellization over thermo-reversible gelation. Polymer. 2013;54(26):6894–901.

    Article  CAS  Google Scholar 

  • **ao Y, Gateau J, Silva AKA, Shi X, Gazeau F, Mangeney C, Luo Y. Hybrid nano- and microgels doped with photoacoustic contrast agents for cancer theranostics. View. 2021;2(6):20200176.

    Article  CAS  Google Scholar 

  • **ao Z, Zhang L, Colvin VL, Zhang Q, Bao G. Synthesis and application of magnetic nanocrystal clusters. Ind Eng Chem Res. 2022;61:7613.

    Article  CAS  Google Scholar 

  • **ng Q, Yates K, Vogt C, Qian Z, Frost MC, Zhao F. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep. 2014;4(1):4706.

    Article  Google Scholar 

  • Xu Z, Ma X, Gao Y-E, Hou M, Xue P, Li CM, Kang Y. Multifunctional silica nanoparticles as a promising theranostic platform for biomedical applications. Mater Chem Front. 2017;1(7):1257–72.

    Article  CAS  Google Scholar 

  • Xu C, Akakuru OU, Ma X, Zheng J, Zheng J, Wu A. Nanoparticle-based wound dressing: recent Progress in the detection and therapy of bacterial infections. Bioconjug Chem. 2020a;31(7):1708–23.

    Article  CAS  Google Scholar 

  • Xu X, Liu Y, Fu W, Yao M, Ding Z, Xuan J, Li D, Wang S, **a Y, Cao M. Poly(N-isopropylacrylamide)-based Thermoresponsive composite hydrogels for biomedical applications. Polymers (Basel). 2020b;12(3):580.

    Article  CAS  Google Scholar 

  • Yadav M, Goswami P, Paritosh K, Kumar M, Pareek N, Vivekanand V. Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresour Bioprocess. 2019;6(1):8.

    Article  Google Scholar 

  • Yang X, Stein EW, Ashkenazi S, Wang LV. Nanoparticles for photoacoustic imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(4):360–8.

    Article  CAS  Google Scholar 

  • Yu Y, Ma Y, Yin J, Zhang C, Feng G, Zhang Y, Meng J. Tuning the micro-phase separation of the PES-g-PEG comb-like copolymer membrane for efficient CO2 separation. Sep Purif Technol. 2021;265:118465.

    Article  CAS  Google Scholar 

  • Yudasaka M, Ajima K, Suenaga K, Ichihashi T, Hashimoto A, Iijima S. Nano-extraction and nano-condensation for C60 incorporation into single-wall carbon nanotubes in liquid phases. Chem Phys Lett. 2003;380(1):42–6.

    Article  CAS  Google Scholar 

  • Zhai P, Peng X, Li B, Liu Y, Sun H, Li X. The application of hyaluronic acid in bone regeneration. Int J Biol Macromol. 2020;151:1224–39.

    Article  CAS  Google Scholar 

  • Zhang H, Mi P. 12 – polymeric micelles for tumor theranostics. In: Cui W, Zhao X, editors. Theranostic bionanomaterials. Elsevier; 2019. p. 289–302.

    Chapter  Google Scholar 

  • Zhang J, Traylor KS, Mountz JM. PET and SPECT imaging of brain tumors. Semin Ultrasound CT MRI. 2020;41(6):530–40.

    Article  Google Scholar 

  • Zhu W, Zhao J, Chen Q, Liu Z. Nanoscale metal-organic frameworks and coordination polymers as theranostic platforms for cancer treatment. Coord Chem Rev. 2019;398:113009.

    Article  CAS  Google Scholar 

  • Zhu W, Wei Z, Han C, Weng X. Nanomaterials as promising Theranostic tools in nanomedicine and their applications in clinical disease diagnosis and treatment. Nanomaterials (Basel). 2021;11(12):3346.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03025582) and the National Research Foundation of Korea (NRF-2019R1D1A3A03103828) and (NRF 2022R1I1A3063302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Taek Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patil, T.V., Lim, KT. (2023). Fundamental in Polymer-/Nanohybrid-Based Nanorobotics for Theranostics. In: Lim, KT., Abd-Elsalam, K.A. (eds) Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine. Springer, Cham. https://doi.org/10.1007/978-3-031-16084-4_5

Download citation

Publish with us

Policies and ethics

Navigation