Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

  • 216 Accesses

Abstract

Human sense of touch provides a wealth of information about the contact condition and the properties of the object being manipulated, such as its material, curvature and frictional capacity at the interface. An accurate estimation of these properties is crucial for a good object manipulation. This chapter reviews the literature from the very interaction of the finger skin to the active hand motion for a stable gras**. It is divided into four sections:

  1. 1.

    How do humans interact? This section describes hand’s anatomy, mechanics and skin structure. At the end, a review of the mechanical models of skin tissues are also presented.

  2. 2.

    How do humans sense? Tactile sensing system relies on mechano-transduction ensured by thousands of mechanoreceptors. These afferents are converting mechanical touch to processable tactile signals by the central nervous system.

  3. 3.

    How do humans perceive? Once a skin deformation is sensed, i.e. sent to the brain via the nerves, the central nervous system is responsible for extracting information about objects or contact from the raw signals.

  4. 4.

    How do humans manipulate? This section details the control of gras** and manipulation tasks using the contact information extracted from the tactile signals as feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.J. Wood, P.T. Bladon, The Human Skin (Arnold, 1985)

    Google Scholar 

  2. L.A. Jones, S.J. Lederman, Human Hand Function (Oxford University Press, Oxford, 2006)

    Google Scholar 

  3. P. Corcuff, G. Gonnord, G. Pierard, J. Lévěque, In vivo confocal microscopy of human skin: a new design for cosmetology and dermatology. Scanning J. Scanning Microsc. 18, 351–355 (1996)

    Google Scholar 

  4. M. Rajadhyaksha, S. González, J.M. Zavislan, R.R. Anderson, R.H. Webb, In vivo confocal scanning laser microscopy of human skin ii: advances in instrumentation and comparison with histology. J. Investig. Dermatology 113, 293–303 (1999)

    Article  Google Scholar 

  5. K.S. Wu, W.W. van Osdol, R.H. Dauskardt, Mechanical properties of human stratum corneum: effects of temperature, hydration, and chemical treatment. Biomaterials 27, 785–795 (2006)

    Article  Google Scholar 

  6. X. Liang, S.A. Boppart, Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Trans. Biomed. Eng. 57, 953–959 (2009)

    Article  Google Scholar 

  7. B.M. Dzidek, M.J. Adams, J.W. Andrews, Z. Zhang, S.A. Johnson, Contact mechanics of the human finger pad under compressive loads. J. R. Soc. Interface 14 (2017)

    Google Scholar 

  8. C. Escoffier, J. de Rigal, A. Rochefort, R. Vasselet, J.-L. Lévêque, P.G. Agache, Age-related mechanical properties of human skin: an in vivo study. J. Investig. Dermatology 93, 353–357 (1989)

    Article  Google Scholar 

  9. W. Maurel, D. Thalmann, Y. Wu, N.M. Thalmann, Biomechanical Models for Soft Tissue Simulation, vol. 48 (Springer, Berlin, 1998)

    Book  Google Scholar 

  10. J. Gosline, M. Lillie, E. Carrington, P. Guerette, C. Ortlepp, K. Savage, Elastic proteins: biological roles and mechanical properties. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 357, 121–132 (2002)

    Article  Google Scholar 

  11. S. Diridollou, M. Berson, V. Vabre, D. Black, B. Karlsson, F. Auriol, J. Gregoire, C. Yvon, L. Vaillant, Y. Gall et al., An in vivo method for measuring the mechanical properties of the skin using ultrasound. Ultrasound Med. Biol. 24, 215–224 (1998)

    Article  Google Scholar 

  12. A. Finlay, The physical properties and function of nails, in The Physical Nature of the Skin (Springer, Berlin, 1988), pp. 143–154

    Google Scholar 

  13. L. Farran, A. Ennos, M. Starkie, S. Eichhorn, Tensile and shear properties of fingernails as a function of a changing humidity environment. J. Biomech. 42, 1230–1235 (2009)

    Article  Google Scholar 

  14. S.A. Mascaro, H.H. Asada, Understanding of fingernail-bone interaction and fingertip hemodynamics for fingernail sensor design, in International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (2002), pp. 113–113

    Google Scholar 

  15. P.A. Payne, Measurement of properties and function of skin. Clin. Phys. Physiol. Meas. 12, 105 (1991)

    Article  Google Scholar 

  16. G. Wilkes, I. Brown, R. Wildnauer, The biomechanical properties of skin. CRC Critical Rev. Bioeng. 1, 453–495 (1973)

    Google Scholar 

  17. D.T. Pawluk, R.D. Howe, Dynamic lumped element response of the human fingerpad (1999)

    Google Scholar 

  18. N. Nakazawa, R. Ikeura, H. Inooka, Characteristics of human fingertips in shearing direction. Jpn. J. Ergon. 34, 520–521 (1998)

    Google Scholar 

  19. F.H. Silver, J.W. Freeman, D. DeVore, Viscoelastic properties of human skin and processed dermis. Ski. Res. Technol. 7, 18–23 (2001)

    Article  Google Scholar 

  20. G. Holzapfel, Biomechanics of Soft Tissues: Handbook of Material Behaviour (2000)

    Google Scholar 

  21. H. Oxlund, J. Manschot, A. Viidik, The role of elastin in the mechanical properties of skin. J. Biomech. 21, 213–218 (1988)

    Article  Google Scholar 

  22. F.H. Silver, L.M. Siperko, G.P. Seehra, Mechanobiology of force transduction in dermal tissue. Ski. Res. Technol. 9, 3–23 (2003)

    Article  Google Scholar 

  23. J. De Rigal, J.-L. Leveque, In vivo measurement of the stratum corneum elasticity. Bioeng. Ski. 1, 13–23 (1985)

    Google Scholar 

  24. Q. Wang, V. Hayward, In vivo biomechanics of the fingerpad skin under local tangential traction. J. Biomech. 40, 851–860 (2007)

    Article  Google Scholar 

  25. B. Delhaye, A. Barrea, B.B. Edin, P. Lefevre, J.-L. Thonnard, Surface strain measurements of fingertip skin under shearing. J. R. Soc. Interface 13, 20150874 (2016)

    Article  Google Scholar 

  26. T.C. Pataky, M.L. Latash, V.M. Zatsiorsky, Viscoelastic response of the finger pad to incremental tangential displacements. J. Biomech. 38, 1441–1449 (2005)

    Article  Google Scholar 

  27. N. Nakazawa, R. Ikeura, H. Inooka, Characteristics of human fingertips in the shearing direction. Biol. Cybern. 82, 207–214 (2000)

    Article  Google Scholar 

  28. S. Kumar, G. Liu, D.W. Schloerb, M.A. Srinivasan, Viscoelastic characterization of the primate finger pad in vivo by microstep indentation and three-dimensional finite element models for tactile sensation studies. J. Biomech. Eng. 137 (2015)

    Google Scholar 

  29. R. Minns, P. Soden, D. Jackson, The role of the fibrous components and ground substance in the mechanical properties of biological tissues: a preliminary investigation. J. Biomech. 6, 153–165 (1973)

    Article  Google Scholar 

  30. A. Karimi, M. Haghighatnama, A. Shojaei, M. Navidbakhsh, A. Motevalli Haghi, and S.J. Adnani Sadati, Measurement of the viscoelastic mechanical properties of the skin tissue under uniaxial loading. Proc. Inst. Mech. Eng. Part L: J. Mater.: Des. Appl. 230, 418–425 (2016)

    Google Scholar 

  31. E. Jacquet, G. Josse, F. Khatyr, C. Garcin, A new experimental method for measuring skin’s natural tension. Ski. Res. Technol. 14, 1–7 (2008)

    Google Scholar 

  32. C. Flynn, A.J. Taberner, P.M. Nielsen, S. Fels, Simulating the three dimensional deformation of in vivo facial skin. J. Mech. Behav. Biomed. Mater. 28, 484–494 (2013)

    Article  Google Scholar 

  33. S. Diridollou, F. Patat, F. Gens, L. Vaillant, D. Black, J. Lagarde, Y. Gall, M. Berson, In vivo model of the mechanical properties of the human skin under suction. Ski. Res. Technol. 6, 214–221 (2000)

    Article  Google Scholar 

  34. C.H. Daly, Biomechanical properties of dermis. J. Investig. Dermatology 79, 17–20 (1982)

    Article  Google Scholar 

  35. D. Bader, P. Bowker, Mechanical characteristics of skin and underlying tissues in vivo. Biomaterials 4, 305–308 (1983)

    Article  Google Scholar 

  36. R. Sanders, Torsional elasticity of human skin in vivo. Pflügers Archiv 342, 255–260 (1973)

    Article  Google Scholar 

  37. P.G. Agache, C. Monneur, J.L. Leveque, J. De Rigal, Mechanical properties and young’s modulus of human skin in vivo. Arch. Dermatological Res. 269, 221–232 (1980)

    Article  Google Scholar 

  38. J. Manschot, A. Brakkee, The measurement and modelling of the mechanical properties of human skin in vivo. J. Biomech. 19, 517–521 (1986)

    Article  Google Scholar 

  39. A. Barel, Suction method for measurement of skin mechanical properties: the cutometer, in Handbook of Non-invasive Methods and the Skin (1995)

    Google Scholar 

  40. P. Corcuff, C. Bertrand, J. Leveque, Morphometry of human epidermis in vivo by real-time confocal microscopy. Arch. Dermatological Res. 285, 475–481 (1993)

    Article  Google Scholar 

  41. M.L. Crichton, B.C. Donose, X. Chen, A.P. Raphael, H. Huang, M.A. Kendall, The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers. Biomaterials 32, 4670–4681 (2011)

    Article  Google Scholar 

  42. M. Geerligs, L. Van Breemen, G. Peters, P. Ackermans, F. Baaijens, C. Oomens, In vitro indentation to determine the mechanical properties of epidermis. J. Biomech. 44, 1176–1181 (2011)

    Article  Google Scholar 

  43. C. Pailler-Mattei, S. Bec, H. Zahouani, In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med. Eng. Phys. 30, 599–606 (2008)

    Article  Google Scholar 

  44. A. Delalleau, G. Josse, J.-M. Lagarde, H. Zahouani, J.-M. Bergheau, A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo. Ski. Res. Technol. 14, 152–164 (2008)

    Article  MATH  Google Scholar 

  45. C. Lees, J.F. Vincent, J.E. Hillerton, Poisson’s ratio in skin. Bio-Med. Mater. Eng. 1, 19–23 (1991)

    Article  Google Scholar 

  46. M.J. Adams, S.A. Johnson, P. Lefèvre, V. Lévesque, V. Hayward, T. André, J.-L. Thonnard, Finger pad friction and its role in grip and touch. J. R. Soc. Interface 10, 20120467 (2013)

    Article  Google Scholar 

  47. S.M. Pasumarty, S.A. Johnson, S.A. Watson, M.J. Adams, Friction of the human finger pad: influence of moisture, occlusion and velocity. Tribol. Lett. 44, 117 (2011)

    Article  Google Scholar 

  48. G. Chimata, C.J. Schwartz, Investigation of friction mechanisms in finger pad sliding against surfaces of varying roughness. Biotribology 3, 11–19 (2015)

    Article  Google Scholar 

  49. P.H. Warman, A.R. Ennos, Fingerprints are unlikely to increase the friction of primate fingerpads. J. Exp. Biol. 212, 2016–2022 (2009)

    Article  Google Scholar 

  50. J. Scheibert, S. Leurent, A. Prevost, G. Debrégeas, The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323, 1503–1506 (2009)

    Article  Google Scholar 

  51. N. Cauna, Nature and functions of the papillary ridges of the digital skin. Anat. Rec. 119, 449–468 (1954)

    Article  Google Scholar 

  52. A. Barrea, D.C. Bulens, P. Lefèvre, J.-L. Thonnard, Simple and reliable method to estimate the fingertip static coefficient of friction in precision grip. IEEE Trans. Haptics 9, 492–498 (2016)

    Article  Google Scholar 

  53. B. Persson, O. Albohr, C. Creton, V. Peveri, Contact area between a viscoelastic solid and a hard, randomly rough, substrate. J. Chem. Phys. 120, 8779–8793 (2004)

    Article  Google Scholar 

  54. M. Barquins, A. Roberts, Rubber friction variation with rate and temperature: some new observations. J. Phys. D: Appl. Phys. 19, 547 (1986)

    Article  Google Scholar 

  55. M. Wiertlewski, R.F. Friesen, J.E. Colgate, Partial squeeze film levitation modulates fingertip friction. Proc. Natl. Acad. Sci. 113, 9210–9215 (2016)

    Article  Google Scholar 

  56. B. Briscoe, D. Tabor, Shear properties of thin polymeric films. J. Adhes. 9, 145–155 (1978)

    Article  Google Scholar 

  57. T. Andrè, V. Lèvesque, V. Hayward, P. Lefévre, J.-L. Thonnard, Effect of skin hydration on the dynamics of fingertip grip** contact. J. R. Soc. Interface 8, 1574–1583 (2011)

    Article  Google Scholar 

  58. R. Sahli, G. Pallares, C. Ducottet, I.B. Ali, S. Al Akhrass, M. Guibert, J. Scheibert, Evolution of real contact area under shear and the value of static friction of soft materials. Proc. Natl. Acad. Sci. 115, 471–476 (2018)

    Google Scholar 

  59. F.P. Bowden, D. Tabor, The area of contact between stationary and moving surfaces. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 169, 391–413 (1939)

    Google Scholar 

  60. B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156, 636–638 (1967)

    Article  Google Scholar 

  61. N. Harrick, Fingerprinting via total internal reflection. Philips Tech. Rev. 1963, 271 (1962)

    Google Scholar 

  62. S. Bochereau, B. Dzidek, M. Adams, V. Hayward, Characterizing and imaging gross and real finger contacts under dynamic loading. IEEE Trans. Haptics 10, 456–465 (2017)

    Article  Google Scholar 

  63. B. Dzidek, S. Bochereau, S.A. Johnson, V. Hayward, M.J. Adams, Why pens have rubbery grips. Proc. Natl. Acad. Sci. 114, 10864–10869 (2017)

    Article  Google Scholar 

  64. M. Tada, T. Kanade, An imaging system of incipient slip for modelling how human perceives slip of a fingertip, in The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1 (IEEE, 2004), pp. 2045–2048

    Google Scholar 

  65. B.A. Krick, J.R. Vail, B.N. Persson, W.G. Sawyer, Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribol. Lett. 45, 185–194 (2012)

    Article  Google Scholar 

  66. B. Delhaye, P. Lefevre, J.-L. Thonnard, Dynamics of fingertip contact during the onset of tangential slip. J. R. Soc. Interface 11, 20140698 (2014)

    Article  Google Scholar 

  67. T. Sednaoui, E. Vezzoli, B. Dzidek, B. Lemaire-Semail, C. Chappaz, M. Adams, Experimental evaluation of friction reduction in ultrasonic devices, in 2015 IEEE World Haptics Conference (WHC) (IEEE, 2015), pp. 37–42

    Google Scholar 

  68. N. Huloux, C. Bernard, M. Wiertlewski, Estimation of the modulation of friction from the mechanical impedance variations. IEEE Trans. Haptics (2020)

    Google Scholar 

  69. V. Cerruti, Acc. lincei., mem. fis. mat. Roma 3, 81 (1882)

    Google Scholar 

  70. J. Boussinesq, Application des potentiels á l’étude de l’équilibre et du movement des solides élastiques: principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: mémoire suivi de notes étendues sur divers points de physique, mathematique et d’analyse, vol. 4 (Gauthier-Villars, 1885)

    Google Scholar 

  71. A.P. Sripati, S.J. Bensmaia, K.O. Johnson, A continuum mechanical model of mechanoreceptive afferent responses to indented spatial patterns. J. Neurophysiol. 95, 3852–3864 (2006)

    Article  Google Scholar 

  72. M.A. Srinivasan, Surface deflection of primate fingertip under line load. J. Biomech. 22, 343–349 (1989)

    Article  Google Scholar 

  73. E.R. Serina, E. Mockensturm, C. Mote Jr., D. Rempel, A structural model of the forced compression of the fingertip pulp. J. Biomech. 31, 639–646 (1998)

    Article  Google Scholar 

  74. M. Tada, D.K. Pai, Finger shell: predicting finger pad deformation under line loading, in 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (IEEE, 2008), pp. 107–112

    Google Scholar 

  75. T. Maeno, K. Kobayashi, N. Yamazaki, Relationship between the structure of human finger tissue and the location of tactile receptors. JSME Int. J. Ser. C Mech. Syst. Mach. Elements Manuf. 41, 94–100 (1998)

    Google Scholar 

  76. K. Dandekar, B.I. Raju, M.A. Srinivasan, 3-d finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense. J. Biomech. Eng. 125, 682–691 (2003)

    Article  Google Scholar 

  77. M. Tada, How does a fingertip slip?-visualizing partial slippage for modeling of contact mechanics, in 2006 Proceedings of Eurohaptics (2006), pp. 415–420

    Google Scholar 

  78. Z. Wang, L. Wang, S. Morikawa, S. Hirai et al., A 3-d nonhomogeneous FE model of human fingertip based on MRI measurements. IEEE Trans. Instrum. Meas. 61, 3147–3157 (2012)

    Article  Google Scholar 

  79. M. Marino, Molecular and intermolecular effects in collagen fibril mechanics: a multiscale analytical model compared with atomistic and experimental studies. Biomech. Model. Mechanobiol. 15, 133–154 (2016)

    Article  Google Scholar 

  80. J.Z. Wu, D.E. Welcome, K. Krajnak, R.G. Dong, Finite element analysis of the penetrations of shear and normal vibrations into the soft tissues in a fingertip. Med. Eng. Phys. 29, 718–727 (2007)

    Article  Google Scholar 

  81. M.F. Leyva-Mendivil, A. Page, N.W. Bressloff, G. Limbert, A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin. J. Mech. Behav. Biomed. Mater. 49, 197–219 (2015)

    Article  Google Scholar 

  82. Y.-c. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer Science & Business Media, 2013)

    Google Scholar 

  83. A. Talarico, M. Malvezzi, D. Prattichizzo, Modeling the human touch: a fem model of the human hand fingertips for haptic application, in Proceedings of the Comsol Conferences (2014)

    Google Scholar 

  84. P.R. Dahl, A solid friction model, tech. rep. (Aerospace Corp El Segundo Ca, 1968)

    Google Scholar 

  85. C.C. De Wit, H. Olsson, K.J. Astrom, P. Lischinsky, A new model for control of systems with friction. IEEE Trans. Autom. Control. 40, 419–425 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  86. J.R. Phillips, K.O. Johnson, Tactile spatial resolution. III. A continuum mechanics model of skin predicting mechanoreceptor responses to bars, edges, and gratings. J. Neurophysiol. 46, 1204–1225 (1981)

    Google Scholar 

  87. P. Delmas, J. Hao, L. Rodat-Despoix, Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat. Rev. Neurosci. 12, 139–153 (2011)

    Article  Google Scholar 

  88. R.S. Johansson, U. Landstro, R. Lundstro et al., Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements. Brain Res. 244, 17–25 (1982)

    Article  Google Scholar 

  89. I. Darian-Smith, The sense of touch: performance and peripheral neural processes. Compr. Physiol. 739–788 (2011)

    Google Scholar 

  90. A.B. Vallbo, R.S. Johansson et al., Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol 3, 3–14 (1984)

    Google Scholar 

  91. B.B. Edin, Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy skin. J. Neurophysiol. 67, 1105–1113 (1992)

    Article  Google Scholar 

  92. A. Goodwin, V. Macefield, J. Bisley, Encoding of object curvature by tactile afferents from human fingers. J. Neurophysiol. 78, 2881–2888 (1997)

    Article  Google Scholar 

  93. R.H. LaMotte, M.A. Srinivasan, Neural encoding of shape: responses of cutaneous mechanoreceptors to a wavy surface stroked across the monkey fingerpad. J. Neurophysiol. 76, 3787–3797 (1996)

    Article  Google Scholar 

  94. K. Sathian, A. Goodwin, K. John, I. Darian-Smith, Perceived roughness of a grating: correlation with responses of mechanoreceptive afferents innervating the monkey’s fingerpad. J. Neurosci. 9, 1273–1279 (1989)

    Article  Google Scholar 

  95. K.O. Johnson, S.S. Hsiao, Neural mechanisms of tactual form and texture perception. Annu. Rev. Neurosci. 15, 227–250 (1992)

    Article  Google Scholar 

  96. Z. Halata, M. Grim, K.I. Bauman, Friedrich Sigmund Merkel and his Merkel cell, morphology, development, and physiology: review and new results. Anat. Rec. Part A: Discov. Mol. Cell. Evol. Biol.: Off. Publ. Am. Assoc. Anat. 271, 225–239 (2003)

    Google Scholar 

  97. M. Pare, C. Behets, O. Cornu, Paucity of presumptive ruffini corpuscles in the index finger pad of humans. J. Comp. Neurol. 456, 260–266 (2003)

    Article  Google Scholar 

  98. R.S. Johansson, A. Vallbo, Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J. Physiol. 286, 283–300 (1979)

    Article  Google Scholar 

  99. A.M. Smith, S.H. Scott, Subjective scaling of smooth surface friction. J. Neurophysiol. 75, 1957–1962 (1996)

    Article  Google Scholar 

  100. K.O. Johnson, The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455–461 (2001)

    Article  Google Scholar 

  101. M.A. Srinivasan, J. Whitehouse, R.H. LaMotte, Tactile detection of slip: surface microgeometry and peripheral neural codes. J. Neurophysiol. 63, 1323–1332 (1990)

    Article  Google Scholar 

  102. R.S. Johansson, G. Westling, Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Res. 56, 550–564 (1984)

    Article  Google Scholar 

  103. B.B. Edin, Quantitative analyses of dynamic strain sensitivity in human skin mechanoreceptors. J. Neurophysiol. 92, 3233–3243 (2004)

    Article  Google Scholar 

  104. A.G. Witney, A. Wing, J.-L. Thonnard, A.M. Smith, The cutaneous contribution to adaptive precision grip. Trends Neurosci. 27, 637–643 (2004)

    Article  Google Scholar 

  105. M. Pare, R. Elde, J.E. Mazurkiewicz, A.M. Smith, F.L. Rice, The Meissner corpuscle revised: a multiafferented mechanoreceptor with nociceptor immunochemical properties. J. Neurosci. 21, 7236–7246 (2001)

    Article  Google Scholar 

  106. J. Bell, S. Bolanowski, M.H. Holmes, The structure and function of Pacinian corpuscles: a review. Prog. Neurobiol. 42, 79–128 (1994)

    Article  Google Scholar 

  107. R.T. Verrillo, Investigation of some parameters of the cutaneous threshold for vibration. J. Acoust. Soc. Am. 34, 1768–1773 (1962)

    Article  Google Scholar 

  108. S.J. Bolanowski Jr., G.A. Gescheider, R.T. Verrillo, C.M. Checkosky, Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84, 1680–1694 (1988)

    Article  Google Scholar 

  109. B. Duvernoy, S. Topp, J. Milroy, andV. Hayward, Numerosity identification used to assess tactile stimulation methods for communication. IEEE Trans. Haptics (2020)

    Google Scholar 

  110. H.B. Wasling, U. Norrsell, K. Göthner, H. Olausson, Tactile directional sensitivity and postural control. Experimental Brain Res. 166, 147–156 (2005)

    Article  Google Scholar 

  111. S. Weinstein, Intensive and extensive aspects of tactile sensitivity as a function of body part, sex and laterality. The Ski Senses (1968)

    Google Scholar 

  112. R.T. Verrillo, Effect of contactor area on the vibrotactile threshold. J. Acoust. Soc. Am. 35, 1962–1966 (1963)

    Article  Google Scholar 

  113. D. Shooter, Use of two-point discrimination as a nerve repair assessment tool: preliminary report. ANZ J. Surg. 75, 866–868 (2005)

    Article  Google Scholar 

  114. J.C. Craig, K.O. Johnson, The two-point threshold: not a measure of tactile spatial resolution. Curr. Dir. Psychol. Sci. 9, 29–32 (2000)

    Article  Google Scholar 

  115. K.O. Johnson, J.R. Phillips, Tactile spatial resolution. i. two-point discrimination, gap detection, grating resolution, and letter recognition. J. Neurophysiol. 46, 1177–1192 (1981)

    Google Scholar 

  116. E.B. Titchener, On ethnological tests of sensation and perception with special reference to tests of color vision and tactile discrimination described in the reports of the cambridge anthropological expedition to torres straits. Proc. Am. Philos. Soc. 55, 204–236 (1916)

    Google Scholar 

  117. F. Vega-Bermudez, K. Johnson, Surround suppression in the responses of primate SA1 and RA mechanoreceptive afferents mapped with a probe array. J. Neurophysiol. 81, 2711–2719 (1999)

    Article  Google Scholar 

  118. J.C. Stevens, K.K. Choo, Spatial acuity of the body surface over the life span. Somat. Mot. Res. 13, 153–166 (1996)

    Article  Google Scholar 

  119. R.W. Van Boven, K.O. Johnson, The limit of tactile spatial resolution in humans: grating orientation discrimination at the lip, tongue, and finger. Neurology 44, 2361–2361 (1994)

    Article  Google Scholar 

  120. I.J. Hirsh, C.E. Sherrick Jr., Perceived order in different sense modalities. J. Exp. Psychol. 62, 423 (1961)

    Article  Google Scholar 

  121. C.L. Van Doren, G.A. Gescheider, R.T. Verrillo, Vibrotactile temporal gap detection as a function of age. J. Acoust. Soc. Am. 87, 2201–2206 (1990)

    Article  Google Scholar 

  122. G.A. Gescheider, S.J. Bolanowski, S.K. Chatterton, Temporal gap detection in tactile channels. Somat. Mot. Res. 20, 239–247 (2003)

    Article  Google Scholar 

  123. J.C. Craig, X. Baihua, Temporal order and tactile patterns. Percept. Psychophys. 47, 22–34 (1990)

    Article  Google Scholar 

  124. S. Kuroki, S. Nishida, Motion direction discrimination with tactile randomdot kinematograms. i-Perception 12, 20416695211004620 (2021)

    Google Scholar 

  125. E.P. Gardner, B.F. Sklar, Discrimination of the direction of motion on the human hand: a psychophysical study of stimulation parameters. J. Neurophysiol. 71, 2414–2429 (1994)

    Article  Google Scholar 

  126. G. Essick, O. Franzen, B. Whitsel, Discrimination and scaling of velocity of stimulus motion across the skin. Somat. Mot. Res. 6, 21–40 (1988)

    Article  Google Scholar 

  127. A. Dépeault, E.-M. Meftah, C.E. Chapman, Tactile speed scaling: contributions of time and space. J. Neurophysiol. 99, 1422–1434 (2008)

    Article  Google Scholar 

  128. A. Bicchi, E.P. Scilingo, E. Ricciardi, P. Pietrini, Tactile flow explains haptic counterparts of common visual illusions. Brain Res. bulletin 75, 737–741 (2008)

    Article  Google Scholar 

  129. V. Hayward, M. Cruz-Hernandez, Tactile display device using distributed lateral skin stretch, in Proceedings of the Haptic Interfaces for Virtual Environment and Teleoperator Systems Symposium, vol. 69, 2 (Citeseer, 2000), pp. 1309–1314

    Google Scholar 

  130. F.A. Geldard, C.E. Sherrick, The cutaneous “rabbit’’: a perceptual illusion. Science 178, 178–179 (1972)

    Article  Google Scholar 

  131. O. Carter, T. Konkle, Q. Wang, V. Hayward, C. Moore, Tactile rivalry demonstrated with an ambiguous apparent-motion quartet. Curr. Biol. 18, 1050–1054 (2008)

    Article  Google Scholar 

  132. A. Bicchi, E.P. Scilingo, D. Dente, N. Sgambelluri, 10 tactile flow and haptic discrimination of softness, in Multi-point Interaction with Real and Virtual Objects (Springer, Berlin, 2005), pp.165–176

    Google Scholar 

  133. E.H. Adelson, J.R. Bergen, Spatiotemporal energy models for the perception of motion. Josa a 2, 284–299 (1985)

    Article  Google Scholar 

  134. S.J. Lederman, L.A. Jones, Tactile and haptic illusions. IEEE Trans. Haptics 4, 273–294 (2011)

    Article  Google Scholar 

  135. C.E. Sherrick, R. Rogers, Apparent haptic movement. Percept. Psychophys. 1, 175–180 (1966)

    Article  Google Scholar 

  136. J.H. Kirman, Tactile apparent movement: the effects of interstimulus onset interval and stimulus duration. Percept. Psychophys. 15, 1–6 (1974)

    Article  Google Scholar 

  137. W. Neuhaus, Experimentelle untersuchung der scheinbewegung. Archiv für die gesamte Psychologie (1930)

    Google Scholar 

  138. S. Kaneko, H. Kajimoto, V. Hayward, A case of perceptual completion in spatio-temporal tactile space, in International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (Springer, Berlin, 2018), pp. 49–57

    Google Scholar 

  139. N. Kitagawa, Y. Igarashi, M. Kashino, The tactile continuity illusion. J. Exp. Psychol.: Hum. Percept. Perform. 35, 1784 (2009)

    Google Scholar 

  140. H. Helson, S.M. King, The tau effect: an example of psychological relativity. J. Exp. Psychol. 14, 202 (1931)

    Article  Google Scholar 

  141. Y. Suto, The effect of space on time estimation (s-ffect) in tactual space (i). Jpn. J. Psychol. 22, 189–204 (1951)

    Google Scholar 

  142. T. Seizova-Cajic, J.L. Taylor, Somatosensory space abridged: rapid change in tactile localization using a motion stimulus. PLoS One 9, e90892 (2014)

    Article  Google Scholar 

  143. R.W. Cholewiak, A.A. Collins, The generation of vibrotactile patterns on a linear array: influences of body site, time, and presentation mode. Percept. Psychophys. 62, 1220–1235 (2000)

    Article  Google Scholar 

  144. D. Katz, L.E. Krueger, The World of Touch (Psychology press, 2013)

    Google Scholar 

  145. S.J. Lederman, R.L. Klatzky, Hand movements: a window into haptic object recognition. Cogn. Psychol. 19, 342–368 (1987)

    Article  Google Scholar 

  146. C. Cattaneo, Sul contatto de due corpi elastici: distribuzione locale deglisforzi. Rendiconti dell’Accademia nazionale dei Lincei 6, 342–349 (1938)

    MATH  Google Scholar 

  147. R.D. Mindlin, Compliance of Elastic Bodies in Contact (1949)

    Google Scholar 

  148. A.V. Terekhov, V. Hayward, Minimal adhesion surface area in tangentiallyloaded digital contacts. J. Biomech. 44, 2508–2510 (2011)

    Article  Google Scholar 

  149. R.S. Johansson, G. Westling, Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Experimental Brain Res. 66, 141–154 (1987)

    Article  Google Scholar 

  150. R.H. LaMotte, J. Whitehouse, Tactile detection of a dot on a smooth surface: peripheral neural events. J. Neurophysiol. 56, 1109–1128 (1986)

    Article  Google Scholar 

  151. A. Barrea, B.P. Delhaye, P. Lefèvre, J.-L. Thonnard, Perception of partial slips under tangential loading of the fingertip. Sci. Rep. 8, 1–8 (2018)

    Article  Google Scholar 

  152. A.M. Hadjiosif, M.A. Smith, Flexible control of safety margins for action based on environmental variability. J. Neurosci. 35, 9106–9121 (2015)

    Article  Google Scholar 

  153. G. Cadoret, A.M. Smith, Friction, not texture, dictates grip forces used during object manipulation. J. Neurophysiol. 75, 1963–1969 (1996)

    Article  Google Scholar 

  154. D.A. Nowak, J. Hermsdörfer, Digit cooling influences grasp efficiency during manipulative tasks. Eur. J. Appl. Physiol. 89, 127–133 (2003)

    Article  Google Scholar 

  155. A.M. Smith, C.E. Chapman, M. Deslandes, J.-S. Langlais, M.-P. Thibodeau, Role of friction and tangential force variation in the subjective scaling of tactile roughness. Experimental Brain Res. 144, 211–223 (2002)

    Article  Google Scholar 

  156. D. Gueorguiev, S. Bochereau, A. Mouraux, V. Hayward, J.-L. Thonnard, Touch uses frictional cues to discriminate flat materials. Sci. Rep. 6, 25553 (2016)

    Article  Google Scholar 

  157. E. Samur, J.E. Colgate, M.A. Peshkin, Psychophysical evaluation of a variable friction tactile interface, in Human Vision and Electronic Imaging xiv, vol. 7240 (International Society for Optics and Photonics, 2009), p. 72400J

    Google Scholar 

  158. J.J. Gibson, Observations on active touch. Psychol. Rev. 69, 477 (1962)

    Article  Google Scholar 

  159. D.J. Murray, R.R. Ellis, C.A. Bandomir, H.E. Ross, Charpentier on the size-weight illusion. Percept. Psychophys. 61, 1681–1685 (1891, 1999)

    Google Scholar 

  160. J.R. Flanagan, M.A. Beltzner, Independence of perceptual and sensorimotor predictions in the size-weight illusion. Nat. Neurosci. 3, 737–741 (2000)

    Article  Google Scholar 

  161. C.E. Seashore et al., Some psychological statistics II. The material weight illusion. Univ. Iowa Stud. Psychol. 2, 36–46 (1899)

    Google Scholar 

  162. R. Leib, A. Karniel, I. Nisky, The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields. J. Neurophysiol. 113, 3076–3089 (2015)

    Article  Google Scholar 

  163. G. Westling, R.S. Johansson, Responses in glabrous skin mechanoreceptors during precision grip in humans. Experimental Brain Res. 66, 128–140 (1987)

    Article  Google Scholar 

  164. G. Westling, R. Johansson, Factors influencing the force control during precision grip. Experimental Brain Res. 53, 277–284 (1984)

    Article  Google Scholar 

  165. B.B. Edin, G. Westling, R.S. Johansson, Independent control of human finger-tip forces at individual digits during precision lifting. J. Physiol. 450, 547–564 (1992)

    Article  Google Scholar 

  166. K.J. Cole, J.H. Abbs, Grip force adjustments evoked by load force perturbations of a grasped object. J. Neurophysiol. 60, 1513–1522 (1988)

    Article  Google Scholar 

  167. C. Häger-Ross, R.S. Johansson, Nondigital afferent input in reactive control of fingertip forces during precision grip. Experimental Brain Res. 110, 131–141 (1996)

    Article  Google Scholar 

  168. A.-S. Augurelle, A.M. Smith, T. Lejeune, J.-L. Thonnard, Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J. Neurophysiol. 89, 665–671 (2003)

    Article  Google Scholar 

  169. J. Monzée, Y. Lamarre, A.M. Smith, The effects of digital anesthesia on force control using a precision grip. J. Neurophysiol. 89, 672–683 (2003)

    Article  Google Scholar 

  170. C.E. Chapman, Active versus passive touch: factors influencing the transmission of somatosensory signals to primary somatosensory cortex. Can. J. Physiol. Pharmacol. 72, 558–570 (1994)

    Article  Google Scholar 

  171. M. Kawato, Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718–727 (1999)

    Article  Google Scholar 

  172. C.E. Murchison, A Handbook of General Experimental Psychology (1934)

    Google Scholar 

  173. R.P. Rao, D.H. Ballard, Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999)

    Article  Google Scholar 

  174. E. Schröger, A. Marzecová, I. SanMiguel, Attention and prediction in human audition: a lesson from cognitive psychophysiology. European J. Neurosci. 41, 641–664 (2015)

    Article  Google Scholar 

  175. M.O. Ernst, Learning to integrate arbitrary signals from vision and touch. J. Vis. 7, 7–7 (2007)

    Article  Google Scholar 

  176. R.A. Adams, S. Shipp, K.J. Friston, Predictions not commands: active inference in the motor system. Brain Struct. Funct. 218, 611–643 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Willemet .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Willemet, L. (2022). State of the Art. In: The Biomechanics of the Tactile Perception of Friction. Springer Series on Touch and Haptic Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-16053-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16053-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16052-3

  • Online ISBN: 978-3-031-16053-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation