Immune Approaches in Tuberculosis Treatment

  • Chapter
  • First Online:
Tuberculosis

Part of the book series: Integrated Science ((IS,volume 11))

  • 681 Accesses

Summary

Tuberculosis (TB) is a dangerous infectious disease caused by Mycobacterium tuberculosis (M. tb). Although approximately 90% of individuals are infected with M. tb, the disease develops only in 5–10% of the infected people. Other persons infected with M. tb remain healthy during their entire life, i.e., it can be assumed that the symbiotic host–pathogen interactions emerge to prevent not only TB but also other diseases. We believe that the host immune system is important in develo** TB-associated inflammation and another response of this system to M. tb significantly contributes to TB development. Modulation of immunity via immunotherapeutic agents may balance host–pathogen interactions. Conventional chemotherapeutic anti-TB drugs aim at eliminating M. tb, whereas the imbalance in the immunopathological process should be modified by immunotherapy. Adjunctive immunotherapy may enhance the treatment effectiveness, reduce the duration of chemotherapy, and improve the host immunity preventing TB relapses. This chapter deals with the most common types of immunotherapeutic strategies that have been used in clinical trials.

Graphical Abstract

Immunotherapy for tuberculosis (TB)

If you change the way you look at things, the things you look at change.

Max Planck

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Global Tuberculosis Report 2019: WHO Report 2021 (2021) World Health Organization. https://www.who.int/publications/i/item/9789240037021

  2. The End TB Strategy (2015) Global strategy and targets for tuberculosis prevention, care and control after 2015. World Health Organisation. https://www.who.int/tb/post2015_TBstrategy.pdf

  3. Dudnyk A, Butov D, Crudu V, Lange C, Chesov D (2017) MDR-TB in Eastern Europe in the era of the TB elimination action framework. Int J Tuberc Lung Dis 21:2–3

    Article  PubMed  Google Scholar 

  4. Butov D, Myasoedov V, Gumeniuk M, Gumeniuk G, Choporova O, Tkachenko A, Akymenko O, Borysova O, Goptsii O, Ye V, Butova T (2020) Treatment effectiveness and outcome in patients with a relapse and newly diagnosed multidrug-resistant pulmonary tuberculosis. Med Glas (Zenica) 17(2):356–362. https://doi.org/10.17392/1179-20

    Article  PubMed  Google Scholar 

  5. WHO announces updated definitions of extensively drug-resistant tuberculosis (2021) World Health Organisation. https://www.who.int/news/item/27-01-2021-who-announces-updated-definitions-of-extensively-drug-resistant-tuberculosis

  6. World Health Organisation consolidated guidelines on drug-resistant tuberculosis treatment (2019) World Health Organisation. https://apps.who.int/iris/bitstream/handle/10665/311389/9789241550529-eng.pdf?ua=1

  7. Butov D, Lange C, Heyckendorf J, Kalmykova I, Butova T, Borovok N, Novokhatskaya M, Chesov D (2020) Multidrug-resistant tuberculosis in the Kharkiv Region, Ukraine. Int J Tuberc Lung Dis 24(5):485–491

    Article  CAS  PubMed  Google Scholar 

  8. Yew WW, Lange C, Leung CC (2011) Treatment of tuberculosis: update 2010. Eur Respir J 37(2):441–462

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen TVA, Anthony RM, Bañuls AL, Nguyen TVA, Vu DH, Alffenaar JC (2018) Bedaquiline resistance: its emergence, mechanism, and prevention. Clin Infect Dis 66(10):1625–1630

    Article  PubMed  Google Scholar 

  10. Fujiwara M, Kawasaki M, Hariguchi N, Liu Y, Matsumoto M (2018) Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis [published correction appears in Tuberculosis (Edinb). 2018 Mar 31]. Tuberculosis (Edinb) 108:186–194

    Article  CAS  PubMed  Google Scholar 

  11. Olaru ID, von Groote-Bidlingmaier F, Heyckendorf J, Yew WW, Lange C, Chang KC (2015) Novel drugs against tuberculosis: a clinician’s perspective. Eur Respir J 45(4):1119–1131

    Article  CAS  PubMed  Google Scholar 

  12. Zaitzeva SI, Matveeva SL, Gerasimova TG, Pashkov YN, Butov DA, Pylypchuk VS, Frolov VM, Kutsyna GA (2019) Treatment of cavitary and infiltrating pulmonary tuberculosis with and without the immunomodulator Dzherelo. Clin Microbiol Infect 15(12):1154–1162

    Article  Google Scholar 

  13. Butov DA, Efremenko YV, Prihoda ND, Yurchenko LI, Sokolenko NI, Arjanova OV, Stepanenko AL, Butova TS, Zaitzeva SS, Jirathitikal V, Bourinbaiar AS, Kutsyna GA (2012) Adjunct immune therapy of first-diagnosed TB, relapsed TB, treatment-failed TB, multidrug-resistant TB and TB/HIV. Immunotherapy 4(7):687–695

    Article  CAS  PubMed  Google Scholar 

  14. Butov D, Gumenuik M, Gumeniuk G, Tkachenko A, Kikinchuk V, Stepaniuk R, Peshenko A, Butova T (2019) Effectiveness of anti-tuberculosis chemotherapy in patients with tuberculosis relapse compared with newly diagnosed patients. Int J Mycobacteriol 8(4):341–346

    Article  CAS  PubMed  Google Scholar 

  15. Adepoju P (2020) Tuberculosis and HIV responses threatened by COVID-19. Lancet HIV 7(5):e319–e320

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bock P, Jennings K, Vermaak R, Cox H, Meintjes G, Fatti G, Kruger J, De Azevedo V, Maschilla L, Louis F, Gunst C, Grobbelaar N, Dunbar R, Limbada M, Floyd S, Grimwood A, Ayles H, Hayes R, Fidler S, Beyers N (2018) Incidence of tuberculosis among HIV-positive individuals initiating antiretroviral treatment at higher CD4 counts in the HPTN 071 (PopART) trial in South Africa. J Acquir Immune Defic Syndr 77(1):93–101

    Article  PubMed  PubMed Central  Google Scholar 

  17. Abel L, El-Baghdadi J, Bousfiha AA, Casanova JL, Schurr E (2014) Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc Lond B Biol Sci 369(1645):20130428

    Article  PubMed  PubMed Central  Google Scholar 

  18. Butov DO, Kuzhko MM, Makeeva NI, Butova TS, Stepanenko HL, Dudnyk AB (2016) Association of interleukins genes polymorphisms with multi-drug resistant tuberculosis in Ukrainian population. Pneumonol Alergol Pol 84(3):168–173

    PubMed  Google Scholar 

  19. de Martino M, Lodi L, Galli L, Chiappini E (2019) Immune response to Mycobacterium tuberculosis: a narrative review. Front Pediatr 7:350. https://doi.org/10.3389/fped.2019.00350 [Published online 2019 Aug 27]

  20. Abate G, Hoft DF (2016) Immunotherapy for tuberculosis: future prospects. Immunotargets Ther 5:37–45. https://doi.org/10.2147/ITT.S81892

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li Y, Wang Y, Liu X (2012) The role of airway epithelial cells in response to mycobacteria infection. Clin Dev Immunol 2012:791392. https://doi.org/10.1155/2012/791392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carranza C, Chavez-Galan L (2019) Several routes to the same destination: inhibition of phagosome-lysosome fusion by Mycobacterium tuberculosis. Am J Med Sci 357(3):184–194. https://doi.org/10.1016/j.amjms.2018.12.003

    Article  PubMed  Google Scholar 

  23. Jamwal SV, Mehrotra P, Singh A, Siddiqui Z, Basu A, Rao KV (2016) Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism. Sci Rep 6:23089. https://doi.org/10.1038/srep23089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Upadhyay S, Mittal E, Philips JA (2018) Tuberculosis and the art of macrophage manipulation. Pathog Dis 76(4):fty037. https://doi.org/10.1093/femspd/fty037

  25. Stamm CE, Collins AC, Shiloh MU (2015) Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol Rev 264(1):204–219. https://doi.org/10.1111/imr.12263

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wong KW (2017) The role of ESX-1 in Mycobacterium tuberculosis pathogenesis. Microbiol Spectr 5(3): https://doi.org/10.1128/microbiolspec.TBTB2-0001-2015

  27. Wawrocki S, Druszczynska M (2017) Inflammasomes in Mycobacterium tuberculosis-driven immunity. Can J Infect Dis Med Microbiol 2017:2309478. https://doi.org/10.1155/2017/2309478

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pesu M (2016) New insights into the host cell necrosis in tuberculosis. Virulence 7(1):1–2. https://doi.org/10.1080/21505594.2015.1122167

    Article  PubMed  Google Scholar 

  29. Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ, Olivas J, Vance RE, Stallings CL, Virgin HW, Cox JS (2015) The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17(6):811–819. https://doi.org/10.1016/j.chom.2015.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hossain MM, Norazmi MN (2013) Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection—the double-edged sword? Biomed Res Int 2013:179174. https://doi.org/10.1155/2013/179174

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, Van Crevel R (2011) Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol 2011:405310. https://doi.org/10.1155/2011/405310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou Y, Zhang M (2020) Associations between genetic polymorphisms of TLRs and susceptibility to tuberculosis: a meta-analysis. Innate Immun 26(2):75–83. https://doi.org/10.1177/1753425919862354

    Article  CAS  PubMed  Google Scholar 

  33. Wang C, Chen ZL, Pan ZF, Wei LL, Xu DD, Jiang TT, Zhang X, ** ZP, Li ZJ, Li JC (2013) NOD2 polymorphisms and pulmonary tuberculosis susceptibility: a systematic review and meta-analysis. Int J Biol Sci 10(1):103–108. https://doi.org/10.7150/ijbs.7585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Faridgohar M, Nikoueinejad H (2017) New findings of Toll-like receptors involved in Mycobacterium tuberculosis infection. Pathog Glob Health 111(5):256–264. https://doi.org/10.1080/20477724.2017.1351080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Biyikli OO, Baysak A, Ece G, Oz AT, Ozhan MH, Berdeli A (2016) Role of toll-like receptors in tuberculosis infection. Jundishapur J Microbiol 9(10):e20224. https://doi.org/10.5812/jjm.20224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maceda EB, Gonçalves CCM, Andrews JR, Ko AI, Yeckel CW, Croda J (2018) Serum vitamin D levels and risk of prevalent tuberculosis, incident tuberculosis and tuberculin skin test conversion among prisoners. Sci Rep 8(1):997. https://doi.org/10.1038/s41598-018-19589-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Negroni A, Pierdomenico M, Cucchiara S, Stronati L (2018) NOD2 and inflammation: current insights. J Inflamm Res 11:49–60. https://doi.org/10.2147/JIR.S137606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brooks MN, Rajaram MV, Azad AK, Amer AO, Valdivia-Arenas MA, Park JH, Núñez G, Schlesinger LS (2011) NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG in human macrophages. Cell Microbiol 13(3):402–418. https://doi.org/10.1111/j.1462-5822.2010.01544.x

  39. Paik S, Kim JK, Chung C, Jo EK (2019) Autophagy: a new strategy for host-directed therapy of tuberculosis. Virulence 10(1):448–459. https://doi.org/10.1080/21505594.2018.1536598

    Article  CAS  PubMed  Google Scholar 

  40. Bento CF, Empadinhas N, Mendes V (2015) Autophagy in the fight against tuberculosis. DNA Cell Biol 34(4):228–242. https://doi.org/10.1089/dna.2014.2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang R, ** X, Wang C, Pan Y, Ge C, Zhang L, Zhang S, Liu H (2018) Therapeutic effects of recombinant human interleukin 2 as adjunctive immunotherapy against tuberculosis: a systematic review and meta-analysis. PLoS ONE 13(7):e0201025. https://doi.org/10.1371/journal.pone.0201025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu X, Li F, Niu H, Ma L, Chen J, Zhang Y, Peng L, Gan C, Ma X, Zhu B (2019) IL-2 restores T-cell dysfunction induced by persistent Mycobacterium tuberculosis antigen stimulation. Front Immunol 10:2350. https://doi.org/10.3389/fimmu.2019.02350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Waters RS, Perry JSA, Han S, Bielekova B, Gedeon T (2018) The effects of interleukin-2 on immune response regulation. Math Med Biol 35(1):79–119. https://doi.org/10.1093/imammb/dqw021

    Article  PubMed  Google Scholar 

  44. Jacobs A, Wilkinson RJ (2015) Humoral immunity in tuberculosis [published correction appears in Eur J Immunol. 2015 Apr;45(4):1274]. Eur J Immunol 45(3):647–649. https://doi.org/10.1002/eji.201570034

  45. Dannenberg AM Jr, Collins FM (2001) Progressive pulmonary tuberculosis is not due to increasing numbers of viable bacilli in rabbits, mice and guinea pigs, but is due to a continuous host response to mycobacterial products. Tuberculosis (Edinb) 81(3):229–242

    Article  PubMed  Google Scholar 

  46. Mootoo A, Stylianou E, Arias MA, Reljic R (2009) TNF-alpha in tuberculosis: a cytokine with a split personality. Inflamm Allergy Drug Targets 8(1):53–62. https://doi.org/10.2174/187152809787582543

    Article  CAS  PubMed  Google Scholar 

  47. Ravimohan S, Kornfeld H, Weissman D, Bisson GP (2018) Tuberculosis and lung damage: from epidemiology to pathophysiology. Eur Respir Rev 27(147):170077. https://doi.org/10.1183/16000617.0077-2017

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bourinbaiar AS, Mezentseva MV, Butov DA, Nyasulu PS, Efremenko YV, Jirathitikal V, Mishchenko VV, Kutsyna GA (2012) Immune approaches in tuberculosis therapy: a brief overview. Expert Rev Anti Infect Ther 10(3):381–389

    Article  CAS  PubMed  Google Scholar 

  49. Butov D, Zaitseva S, Butova T, Stepanenko G, Pogorelova O, Zhelezniakova N (2016) Efficacy and safety of quercetin and polyvinylpyrrolidone in treatment of patients with newly diagnosed destructive pulmonary tuberculosis in comparison with standard antimycobacterial therapy. Int J Mycobacteriol 5(4):446–453

    Article  PubMed  Google Scholar 

  50. Zeng G, Zhang G, Chen X (2018) Th1 cytokines, true functional signatures for protective immunity against TB? Cell Mol Immunol 15(3):206–215. https://doi.org/10.1038/cmi.2017.113

    Article  CAS  PubMed  Google Scholar 

  51. Amaral EP, Lasunskaia EB, D’Império-Lima MR (2016) Innate immunity in tuberculosis: how the sensing of mycobacteria and tissue damage modulates macrophage death. Microbes Infect 18(1):11–20. https://doi.org/10.1016/j.micinf.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  52. Young C, Walzl G, Du Plessis N (2020) Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol 13(2):190–204. https://doi.org/10.1038/s41385-019-0226-5

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Z, Fan W, Yang G, Xu Z, Wang J, Cheng Q, Yu M (2017) Risk of tuberculosis in patients treated with TNF-α antagonists: a systematic review and meta-analysis of randomised controlled trials. BMJ Open 7(3):e012567. https://doi.org/10.1136/bmjopen-2016-012567 [Published online 2017 Mar 22]

  54. Olsen A, Chen Y, Ji Q, Zhu G, De Silva AD, Vilchèze C, Weisbrod T, Li W, Xu J, Larsen M, Zhang J, Porcelli SA, Jacobs WR Jr, Chan J (2016) Targeting Mycobacterium tuberculosis tumor necrosis factor alpha-downregulating genes for the development of antituberculous vaccines. mBio 7(3):e01023-15. https://doi.org/10.1128/mBio.01023-15.

  55. Esmail H, Wilkinson RJ (2017) Minimizing tuberculosis risk in patients receiving anti-TNF therapy. Ann Am Thorac Soc 14(5):621–623. https://doi.org/10.1513/AnnalsATS.201701-055ED

    Article  PubMed  PubMed Central  Google Scholar 

  56. Denis M, Ghadirian E (1993) Immunotherapy of airborne tuberculosis in mice via the lung-specific delivery of cytokines. Can J Infect Dis 4(1):38–42. https://doi.org/10.1155/1993/954372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nolt D, Flynn JL (2004) Interleukin-12 therapy reduces the number of immune cells and pathology in lungs of mice infected with Mycobacterium tuberculosis. Infect Immun 72(5):2976–2988. https://doi.org/10.1128/iai.72.5.2976-2988.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bermudez LE, Stevens P, Kolonoski P, Wu M, Young LS (1989) Treatment of disseminated Mycobacterium avium complex infection in mice with recombinant interleukin-2 and tumor necrosis factor. J Immunol 143:2996–3002

    Article  CAS  PubMed  Google Scholar 

  59. Bermudez LE, Young LS (1988) Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing of Mycobacterium avium complex. J Immunol 9:3006–3013

    Article  Google Scholar 

  60. Skerry C, Harper J, Klunk M, Bishai WR, Jain SK (2012) Adjunctive TNF inhibition with standard treatment enhances bacterial clearance in a murine model of necrotic TB granulomas. PLoS ONE 7(6):e39680. https://doi.org/10.1371/journal.pone.0039680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nikitina IY, Panteleev AV, Sosunova EV, Karpina NL, Bagdasarian TR, Burmistrova IA, Andreevskaya SN, Chernousova LN, Vasilyeva IA, Lyadova IV (2016) Antigen-specific IFN-γ responses correlate with the activity of M. tuberculosis infection but are not associated with the severity of tuberculosis disease. J Immunol Res 2016:7249369. https://doi.org/10.1155/2016/7249369

  62. Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA, Ganusov VV, Barber DL (2016) CD4 T cell-derived IFN-γ plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog 12(5):e1005667. https://doi.org/10.1371/journal.ppat.1005667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tan Q, Min R, Dai GQ, Wang YL, Nan L, Yang Z, **a J, Pan SY, Mao H, **e WP, Wang H (2017) Clinical and immunological effects of rhIL-2 therapy in Eastern Chinese patients with multidrug-resistant tuberculosis. Sci Rep 7(1):17854. https://doi.org/10.1038/s41598-017-18200-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnson BJ, Bekker LG, Rickman R, Brown S, Lesser M, Ress S, Willcox P, Steyn L, Kaplan G (1997) rhuIL-2 adjunctive therapy in multidrug resistant tuberculosis: a comparison of two treatment regimens and placebo. Tuber Lung Dis 78(3–4):195–203. https://doi.org/10.1016/s0962-8479(97)90026-5

    Article  CAS  PubMed  Google Scholar 

  65. Johnson JL, Ssekasanvu E, Okwera A, Mayanja H, Hirsch CS, Nakibali JG, Jankus DD, Eisenach KD, Boom WH, Ellner JJ, Mugerwa RD, Uganda-Case Western Reserve University Research Collaboration (2003) Randomized trial of adjunctive interleukin-2 in adults with pulmonary tuberculosis. Am J Respir Crit Care Med 168(2):185–191. https://doi.org/10.1164/rccm.200211-1359OC

  66. Khan TA, Mazhar H, Saleha S, Tipu HN, Muhammad N, Abbas MN (2016) Interferon-gamma improves macrophages function against M. tuberculosis in multidrug-resistant tuberculosis patients. Chemother Res Pract 2016:7295390. https://doi.org/10.1155/2016/7295390

  67. Gao XF, Yang ZW, Li J (2011) Adjunctive therapy with interferon-gamma for the treatment of pulmonary tuberculosis: a systematic review. Int J Infect Dis 15(9):e594–e600. https://doi.org/10.1016/j.ijid.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  68. Suárez-Méndez R, García-García I, Fernández-Olivera N, Valdés-Quintana M, Milanés-Virelles MT, Carbonell D, Machado-Molina D, Valenzuela-Silva CM, López-Saura PA (2004) Adjuvant interferon gamma in patients with drug-resistant pulmonary tuberculosis: a pilot study. BMC Infect Dis 4:44. https://doi.org/10.1186/1471-2334-4-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang YQ, He CW, Li HQ, Zhao HL, Li BJ (2009) Effects of aerosolized interferon-γ in previously treated patients with smear-positive pulmonary tuberculosis. Med Recapitulate 15:306–307

    Google Scholar 

  70. Li D, Du DB, Qiu SQ, Meng QH, Luo SZ, Yuan RJ (2008) The early effectiveness and cellular immune function of interferon-γ combined with Mycobacterium vaccae for previously untreated pulmonary tuberculosis. J Chinese Anti-tuberc Assoc 30:460–461

    Google Scholar 

  71. Wallis RS, Kyambadde P, Johnson JL, Horter L, Kittle R, Pohle M, Ducar C, Millard M, Mayanja-Kizza H, Whalen C, Okwera A (2004) A study of the safety, immunology, virology, and microbiology of adjunctive etanercept in HIV-1-associated tuberculosis. AIDS 18(2):257–264. https://doi.org/10.1097/00002030-200401230-00015

    Article  CAS  PubMed  Google Scholar 

  72. Bourigault ML, Vacher R, Rose S, Olleros ML, Janssens JP, Quesniaux VF, Garcia I (2013) Tumor necrosis factor neutralization combined with chemotherapy enhances Mycobacterium tuberculosis clearance and reduces lung pathology. Am J Clin Exp Immunol 2(1):124–134

    PubMed  PubMed Central  Google Scholar 

  73. Vilaplana C, Cardona PJ (2010) Tuberculin immunotherapy: its history and lessons to be learned. Microbes Infect 12(2):99–105

    Article  CAS  PubMed  Google Scholar 

  74. Chahar M, Rawat KD, Reddy PVJ, Gupta UD, Natrajan M, Chauhan DS, Katoch K, Prasad GBKS, Katoch VM (2018) Potential of adjunctive Mycobacterium w (MIP) immunotherapy in reducing the duration of standard chemotherapy against tuberculosis. Indian J Tuberc 65(4):335–344

    Article  PubMed  Google Scholar 

  75. Butov DA, Efremenko YV, Prihoda ND, Zaitzeva SI, Yurchenko LV, Sokolenko NI, Butova TS, Stepanenko AL, Kutsyna GA, Jirathitikal V, Bourinbaiar AS (2013) Randomized, placebo-controlled Phase II trial of heat-killed Mycobacterium vaccae (Immodulon batch) formulated as an oral pill (V7). Immunotherapy 5(10):1047–1054

    Article  CAS  PubMed  Google Scholar 

  76. Yang XY, Chen QF, Li YP, Wu SM (2011) Mycobacterium vaccae as adjuvant therapy to anti-tuberculosis chemotherapy in never-treated tuberculosis patients: a meta-analysis. PLoS ONE 6(9):e23826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bourinbaiar AS, Batbold U, Efremenko Y, Sanjagdorj M, Butov D, Damdinpurev N, Grinishina E, Mijiddorj O, Kovolev M, Baasanjav K, Butova T, Prihoda N, Batbold O, Yurchenko L, Tseveendorj A, Arzhanova O, Chunt E, Stepanenko H, Sokolenko N, Makeeva N, Tarakanovskaya M, Borisova V, Reid A, Kalashnikov V, Nyasulu P, Prabowo SA, Jirathitikal V, Bain AI, Stanford C, Stanford J (2019) Phase III, placebo-controlled, randomized, double-blind trial of tableted, therapeutic TB vaccine (V7) containing heat-killed M. vaccae administered daily for one month. J Clin Tuberc Other Mycobact Dis 18:100141

    Google Scholar 

  78. Lei JP, **ong GL, Hu QF, Li Y, Zong PL, Tu SH, Tu RY (2008) Immunotherapeutic efficacy of BCG vaccine in pulmonary tuberculosis and its preventive effect on multidrug-resistant tuberculosis. Zhonghua Yu Fang Yi Xue Za Zhi 42(2):86–89

    PubMed  Google Scholar 

  79. Prabowo SA, Painter H, Zelmer A, Smith SG, Seifert K, Amat M, Cardona PJ, Fletcher HA (2019) RUTI vaccination enhances inhibition of mycobacterial growth ex vivo and induces a shift of monocyte phenotype in mice. Front Immunol 10:894

    Google Scholar 

  80. Bruffaerts N, Huygen K, Romano M (2014) DNA vaccines against tuberculosis. Expert Opin Biol Ther 14(12):1801–1813. https://doi.org/10.1517/14712598.2014.951630

    Article  CAS  PubMed  Google Scholar 

  81. Liang Y, Bai X, Zhang J, Song J, Yang Y, Yu Q, Li N, Wu X (2016) Ag85A/ESAT-6 chimeric DNA vaccine induces an adverse response in tuberculosis-infected mice. Mol Med Rep 14(2):1146–1152. https://doi.org/10.3892/mmr.2016.5364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wowk PF, Franco LH, Fonseca DMD, Paula MO, Vianna ÉDSO, Wendling AP, Augusto VM, Elói-Santos SM, Teixeira-Carvalho A, Silva FDC, Vinhas SA, Martins-Filho OA, Palaci M, Silva CL, Bonato VLD (2017) Mycobacterial Hsp65 antigen upregulates the cellular immune response of healthy individuals compared with tuberculosis patients. Hum Vaccin Immunother 13(5):1040–1050

    Article  PubMed  PubMed Central  Google Scholar 

  83. Xu Z, Hu T, Liu Z, Shen X, Liu J, Yin Y, Sun L, Chen X, Jiao X (2016) Expression and immunogenicity of Ag85A protein of Mycobacterium tuberculosis. Wei Sheng wu xue bao = Acta Microbiol Sinica 56(5):804–813

    Google Scholar 

  84. Mir SA, Verma I, Sharma S (2014) Immunotherapeutic potential of recombinant ESAT-6 protein in mouse model of experimental tuberculosis. Immunol Lett 158(1–2):88–94

    Article  CAS  PubMed  Google Scholar 

  85. Okada M, Kita Y, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, Kaneda Y, Yoshida S, Nishida Y, Nakatani H, Takao K, Kishigami C, Nishimatsu S, Sekine Y, Inoue Y, Matsumoto M, McMurray DN, De la Cruz EC, Tan EV, Abalos RM, Burgos JA, Saunderson P, Sakatani M (2011) Novel therapeutic vaccine: granulysin and new DNA vaccine against tuberculosis. Hum Vaccin 7:60–67. https://doi.org/10.4161/hv.7.0.14563

    Article  CAS  PubMed  Google Scholar 

  86. Tanghe A, D’Souza S, Rosseels V, Denis O, Ottenhoff TH, Dalemans W, Wheeler C, Huygen K (2001) Improved immunogenicity and protective efficacy of a tuberculosis DNA vaccine encoding Ag85 by protein boosting. Infect Immun 69(5):3041–3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Derrick SC, Yang AL, Morris SL (2004) A polyvalent DNA vaccine expressing an ESAT6-Ag85B fusion protein protects mice against a primary infection with Mycobacterium tuberculosis and boosts BCG-induced protective immunity. Vaccine 23(6):780–788

    Article  CAS  PubMed  Google Scholar 

  88. Butov DO, Zaitseva SI, Pitenko MM, Stepanenko GL, Butova TS (2015) Morphological changes in experimental tuberculosis resulting from treatment with quercetin and polyvinylpyrrolidone. Int J Mycobacteriol 4(4):296–301

    Article  PubMed  Google Scholar 

  89. Senderovitz T, Viskum K (1994) Corticosteroids and tuberculosis. Respir Med 88(8):561–565

    Article  CAS  PubMed  Google Scholar 

  90. Schutz C, Davis AG, Sossen B, Lai RP, Ntsekhe M, Harley YX, Wilkinson RJ (2018) Corticosteroids as an adjunct to tuberculosis therapy. Expert Rev Respir Med 12(10):881–891. https://doi.org/10.1080/17476348.2018.1515628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gräb J, Suárez I, van Gumpel E, Winter S, Schreiber F, Esser A, Hölscher C, Fritsch M, Herb M, Schramm M, Wachsmuth L, Pallasch C, Pasparakis M, Kashkar H, Rybniker J (2019) Corticosteroids inhibit Mycobacterium tuberculosis-induced necrotic host cell death by abrogating mitochondrial membrane permeability transition. Nat Commun 10(1):688. https://doi.org/10.1038/s41467-019-08405-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Butov D, Feshchenko Y, Kuzhko M, Gumenuik M, Yurko K, Grygorova A, Tkachenko A, Nekrasova N, Tlustova T, Kikinchuk V, Peshenko A, Butova T (2020) Effectiveness of intravenous isoniazid and ethambutol administration in patients with tuberculosis meningoencephalitis and HIV infection. Tuberc Respir Dis (Seoul) 83(1):96–103

    Article  PubMed  Google Scholar 

  94. Prasad K, Singh MB, Ryan H (2016) Corticosteroids for managing tuberculous meningitis. Cochrane Database Syst Rev 4(4):CD002244

    Google Scholar 

  95. Muefong CN, Sutherland JS (2020) Neutrophils in tuberculosis-associated inflammation and lung pathology. Front Immunol 11:962. https://doi.org/10.3389/fimmu.2020.00962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Critchley JA, Orton LC, Pearson F (2014) Adjunctive steroid therapy for managing pulmonary tuberculosis. Cochrane Database Syst Rev 2014(11):CD011370

    Google Scholar 

  97. Johnson JR, Turk TL, Macdonald FM (1967) Corticosteroids in pulmonary tuberculosis. Am Rev Respir Dis 96:6–73

    Google Scholar 

  98. George IA, Thomas B, Sadhu JS (2018) Systematic review and meta-analysis of adjunctive corticosteroids in the treatment of tuberculous pericarditis. Int J Tuberc Lung Dis 22(5):551–556

    Article  CAS  PubMed  Google Scholar 

  99. Ryan H, Yoo J, Darsini P (2017) Corticosteroids for tuberculous pleurisy. Cochrane Database Syst Rev 3(3):CD001876

    Google Scholar 

  100. Sun F, Li L, Liao X, Yan X, Han R, Lei W, Cao H, Feng M, Cao G (2018) Adjunctive use of prednisolone in the treatment of free-flowing tuberculous pleural effusion: a retrospective cohort study. Respir Med 139:86–90

    Article  PubMed  Google Scholar 

  101. Donovan J, Phu NH, Mai NTH, Dung LT, Imran D, Burhan E, Ngoc LHB, Bang ND, Giang DC, Ha DTM, Day J, Thao LTP, Thuong NT, Vien NN, Geskus RB, Wolbers M, Hamers RL, van Crevel R, Nursaya M, Maharani K, Hien TT, Baird K, Lan NH, Kestelyn E, Chau NVV, Thwaites GE (2018) Adjunctive dexamethasone for the treatment of HIV-infected adults with tuberculous meningitis (ACT HIV): study protocol for a randomised controlled trial. Wellcome Open Res 3:31

    Article  PubMed  PubMed Central  Google Scholar 

  102. Elliott AM, Luzze H, Quigley MA, Nakiyingi JS, Kyaligonza S, Namujju PB, Ducar C, Ellner JJ, Whitworth JA, Mugerwa R, Johnson JL, Okwera A (2004) A randomized, double-blind, placebo-controlled trial of the use of prednisolone as an adjunct to treatment in HIV-1-associated pleural tuberculosis. J Infect Dis 190(5):869–878

    Article  CAS  PubMed  Google Scholar 

  103. Mayanja-Kizza H, Jones-Lopez E, Okwera A, Wallis RS, Ellner JJ, Mugerwa RD, Whalen CC, Uganda-Case Western Research Collaboration (2005) Immunoadjuvant prednisolone therapy for HIV-associated tuberculosis: a phase 2 clinical trial in Uganda. J Infect Dis 191(6):856–865

    Google Scholar 

  104. Ralph AP, Kelly PM, Anstey NM (2008) l-Arginine and vitamin D: novel adjunctive immunotherapies in tuberculosis. Trends Microbiol 16(7):336–344. https://doi.org/10.1016/j.tim.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  105. Brighenti S, Bergman P, Martineau AR (2018) Vitamin D and tuberculosis: where next? J Intern Med. https://doi.org/10.1111/joim.12777.doi:10.1111/joim.12777

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kearns MD, Tangpricha V (2014) The role of vitamin D in tuberculosis. J Clin Transl Endocrinol 1(4):167–169. https://doi.org/10.1016/j.jcte.2014.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  107. Talat N, Perry S, Parsonnet J, Dawood G, Hussain R (2010) Vitamin D deficiency and tuberculosis progression. Emerg Infect Dis 16(5):853–855. https://doi.org/10.3201/eid1605.091693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chung C, Silwal P, Kim I, Modlin RL, Jo EK (2020) Vitamin D-cathelicidin axis: at the crossroads between protective immunity and pathological inflammation during infection. Immune Netw 20(2):e12. https://doi.org/10.4110/in.2020.20.e12

    Article  PubMed  PubMed Central  Google Scholar 

  109. Junaid K, Rehman A (2019) Impact of vitamin D on infectious disease-tuberculosis—a review. Clin Nutr Exp 25:1–10. https://doi.org/10.1016/j.yclnex.2019.02.003

    Article  Google Scholar 

  110. Torres-Juarez F, Cardenas-Vargas A, Montoya-Rosales A, González-Curiel I, Garcia-Hernandez MH, Enciso-Moreno JA, Hancock RE, Rivas-Santiago B (2015) LL-37 immunomodulatory activity during Mycobacterium tuberculosis infection in macrophages. Infect Immun 83(12):4495–4503. https://doi.org/10.1128/IAI.00936-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen Y, Zhang J, Ge X, Du J, Deb DK, Li YC (2013) Vitamin D receptor inhibits nuclear factor κB activation by interacting with IκB kinase β protein. J Biol Chem 288(27):19450–19458. https://doi.org/10.1074/jbc.M113.467670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Adamczak DM (2017) The role of toll-like receptors and vitamin D in cardiovascular diseases—a review. Int J Mol Sci 18(11):2252. https://doi.org/10.3390/ijms18112252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Panwar A, Garg RK, Malhotra HS, Jain A, Singh AK, Prakash S, Kumar N, Garg R, Mahdi AA, Verma R, Sharma PK (2016) 25-Hydroxy vitamin D, vitamin D receptor and toll-like receptor 2 polymorphisms in spinal tuberculosis: a case-control study. Medicine (Baltimore) 95(17):e3418. https://doi.org/10.1097/MD.0000000000003418

    Article  CAS  PubMed  Google Scholar 

  114. Campbell GR, Spector SA (2012) Autophagy induction by vitamin D inhibits both Mycobacterium tuberculosis and human immunodeficiency virus type 1. Autophagy 8(10):1523–1525. https://doi.org/10.4161/auto.21154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sarkar K, Sil PC (2019) Infectious lung diseases and endogenous oxidative stress. Oxidative Stress in Lung Dis 125–148. https://doi.org/10.1007/978-981-13-8413-4_7

  116. Shastri MD, Shukla SD, Chong WC, Dua K, Peterson GM, Patel RP, Hansbro PM, Eri R, O’Toole RF (2018) Role of oxidative stress in the pathology and management of human tuberculosis. Oxid Med Cell Longev 2018:7695364. https://doi.org/10.1155/2018/7695364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang CH, Lin HC, Liu CY, Huang KH, Huang TT, Yu CT, Kuo HP (2001) Upregulation of inducible nitric oxide synthase and cytokine secretion in peripheral blood monocytes from pulmonary tuberculosis patients. Int J Tuberc Lung Dis 5(3):283–291

    CAS  PubMed  Google Scholar 

  118. Rockett KA, Brookes R, Udalova I, Vidal V, Hill AV, Kwiatkowski D (1998) 1,25-Dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect Immun 66(11):5314–5321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Butov DO, Kuzhko MM, Kalmykova IM, Kuznetsova IM, Butova TS, Grinishina OO, Maksimenko OA (2014) Changes in nitric oxide synthase and nitrite and nitrate serum levels in patients with or without MDR-TB undergoing the intensive phase of anti-tuberculosis therapy. Int J Mycobacteriol 3(2):139–143

    Article  PubMed  Google Scholar 

  120. Ralph AP, Waramori G, Pontororing GJ, Kenangalem E, Wiguna A, Tjitra E, Sandjaja LDB, Yeo TW, Chatfield MD, Soemanto RK, Bastian I, Lumb R, Maguire GP, Eisman J, Price RN, Morris PS, Kelly PM, Anstey NM (2013) l-Arginine and vitamin D adjunctive therapies in pulmonary tuberculosis: a randomised, double-blind, placebo-controlled trial. PLoS ONE 8(8):e70032. https://doi.org/10.1371/journal.pone.0070032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jolliffe DA, Ganmaa D, Wejse C, Raqib R, Haq MA, Salahuddin N, Daley PK, Ralph AP, Ziegler TR, Martineau AR (2019) Adjunctive vitamin D in tuberculosis treatment: meta-analysis of individual participant data. Eur Respir J 53(3):1802003. https://doi.org/10.1183/13993003.02003-2018

    Article  CAS  PubMed  Google Scholar 

  122. Wu HX, **ong XF, Zhu M, Wei J, Zhuo KQ, Cheng DY (2018) Effects of vitamin D supplementation on the outcomes of patients with pulmonary tuberculosis: a systematic review and meta-analysis. BMC Pulm Med 18(1):108. https://doi.org/10.1186/s12890-018-0677-6 [Published online 2018 Jun 28]

  123. Martineau AR, Wilkinson RJ, Wilkinson KA, Newton SM, Kampmann B, Hall BM, Packe GE, Davidson RN, Eldridge SM, Maunsell ZJ, Rainbow SJ, Berry JL, Griffiths CJ (2007) A single dose of vitamin D enhances immunity to mycobacteria. Am J Respir Crit Care Med 176(2):208–213. https://doi.org/10.1164/rccm.200701-007OC

    Article  CAS  PubMed  Google Scholar 

  124. Nursyam EW, Amin Z, Rumende CM (2006) The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med Indones 38(1):3–5

    PubMed  Google Scholar 

  125. Zhang J, Chen C, Yang J (2019) Effectiveness of vitamin D supplementation on the outcome of pulmonary tuberculosis treatment in adults: a meta-analysis of randomized controlled trials. Chin Med J (Engl) 132(24):2950–2959. https://doi.org/10.1097/CM9.0000000000000554

    Article  CAS  PubMed  Google Scholar 

  126. Wang J, Feng M, Ying S, Zhou J, Li X (2018) Efficacy and safety of vitamin D supplementation for pulmonary tuberculosis: a systematic review and meta-analysis. Iran J Public Health 47(4):466–472

    PubMed  PubMed Central  Google Scholar 

  127. Ganmaa D, Munkhzul B, Fawzi W, Spiegelman D, Willett WC, Bayasgalan P, Baasansuren E, Buyankhishig B, Oyun-Erdene S, Jolliffe DA, Xenakis T, Bromage S, Bloom BR, Martineau AR (2017) High-dose vitamin D3 during tuberculosis treatment in Mongolia. A randomized controlled trial. Am J Respir Crit Care Med 196(5):628–637. https://doi.org/10.1164/rccm.201705-0936OC

  128. Feng M, Ding Q, Zhong C, Li J, Wang Q, Yuan Z, Dong Y (2016) Adjunctive therapy with V-5 Immunitor (V5) for the treatment of tuberculosis patients: a meta-analysis. Pharmazie 71(9):499–503. https://doi.org/10.1691/ph.2016.6051

    Article  CAS  PubMed  Google Scholar 

  129. Batdelger D, Dandii D, Jirathitikal V, Bourinbaiar AS (2008) Open-label trial of therapeutic immunization with oral V-5 Immunitor (V5) vaccine in patients with chronic hepatitis C. Vaccine 26(22):2733–2737

    Article  CAS  PubMed  Google Scholar 

  130. Butov DA, Pashkov YN, Stepanenko AL, Choporova AI, Butova TS, Batdelger D, Jirathitikal V, Bourinbaiar AS, Zaitzeva SI (2011) Phase IIb randomized trial of adjunct immunotherapy in patients with first-diagnosed tuberculosis, relapsed and multi-drug-resistant (MDR) TB. J Immune Based Ther Vaccines 9:3

    Article  PubMed  PubMed Central  Google Scholar 

  131. Skrahin A, Ahmed RK, Ferrara G, Rane L, Poiret T, Isaikina Y, Skrahina A, Zumla A, Maeurer MJ (2014) Autologous mesenchymal stromal cell infusion as adjunct treatment in patients with multidrug and extensively drug-resistant tuberculosis: an open-label phase 1 safety trial. Lancet Respir Med 2(2):108–122

    Article  PubMed  Google Scholar 

  132. Hogan BL, Yingling JM (1998) Epithelial/mesenchymal interactions and branching morphogenesis of the lung. Curr Opin Genet Dev 8(4):481–486

    Article  CAS  PubMed  Google Scholar 

  133. Sinclair K, Yerkovich ST, Chambers DC (2013) Mesenchymal stem cells and the lung. Respirology 18(3):397–411

    Article  PubMed  Google Scholar 

  134. Joshi L, Chelluri LK, Gaddam S (2015) Mesenchymal stromal cell therapy in MDR/XDR tuberculosis: a concise review. Arch Immunol Ther Exp (Warsz) 63(6):427–433

    Article  CAS  PubMed  Google Scholar 

  135. de Vallière S, Abate G, Blazevic A, Heuertz RM, Hoft DF (2005) Enhancement of innate and cell-mediated immunity by antimycobacterial antibodies. Infect Immun 73(10):6711–6720

    Article  PubMed  PubMed Central  Google Scholar 

  136. Roy E, Stavropoulos E, Brennan J, Coade S, Grigorieva E, Walker B, Dagg B, Tascon RE, Lowrie DB, Colston MJ, Jolles S (2005) Therapeutic efficacy of high-dose intravenous immunoglobulin in Mycobacterium tuberculosis infection in mice. Infect Immun 73(9):6101–6109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lopez Y, Yero D, Falero-Diaz G, Olivares N, Sarmiento ME, Sifontes S, Solis RL, Barrios JA, Aguilar D, Hernández-Pando R, Acosta A (2009) Induction of a protective response with an IgA monoclonal antibody against Mycobacterium tuberculosis 16kDa protein in a model of progressive pulmonary infection. Int J Med Microbiol 299(6):447–452

    Article  CAS  PubMed  Google Scholar 

  138. Butova T, Zaitseva S, Butov D, Stepanenko G (2016) Morphological changes in experimental tuberculosis resulting from treatment with quercetin and polyvinylpyrrolidone. Int J Mycobacteriol 5(Suppl 1):S103–S104

    Article  PubMed  Google Scholar 

  139. Butov D, Zaitseva S, Butova T (2016) Efficacy and safety of quercetin and polyvinylpyrrolidone in treatment of patients with newly diagnosed destructive pulmonary tuberculosis in comparison with standard antimycobacterial therapy. Int J Mycobacteriol. 5(Suppl 1):S110–S111

    Article  PubMed  Google Scholar 

  140. Batbold U, Butov DO, Kutsyna GA, Damdinpurev N, Grinishina EA, Mijiddorj O, Kovolev ME, Baasanjav K, Butova TS, Sandagdorj M, Batbold O, Tseveendorj A, Chunt E, Zaitzeva SI, Stepanenko HL, Makeeva NI, Mospan IV, Pylypchuk VS, Rowe JL, Nyasulu P, Jirathitikal V, Bain AI, Tarakanovskaya MG, Bourinbaiar AS (2017) Double-blind, placebo-controlled, 1:1 randomized Phase III clinical trial of Immunoxel honey lozenges as an adjunct immunotherapy in 269 patients with pulmonary tuberculosis. Immunotherapy 9(1):13–24

    Article  CAS  PubMed  Google Scholar 

  141. Mezentseva MV, Stakhanov VA, Zakharova MV, Zotova IF, Shapoval IM, Tregubova MI, Russu L (2011) Prospects of immunotherapy in the complex treatment of the infiltrative pulmonary tuberculosis. Biopreparats (Biopharmaceuticals) 2:20–25

    Google Scholar 

  142. Svistunova AS, Pinegin BV, Selitskaia RP (2002) Primenenie immunomoduliatora likopida v kompleksnom lechenii tuberkuleza legkikh [The use of immunomodulator likopid in the combined treatment pulmonary tuberculosis]. Probl Tuberk 3:21–25

    Google Scholar 

  143. Curtis N, Sparrow A, Ghebreyesus TA, Netea MG (2020) Considering BCG vaccination to reduce the impact of COVID-19. Lancet 395(10236):1545–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Grange JM, Brunet LR, Rieder HL (2011) Immune protection against tuberculosis—when is immunotherapy preferable to vaccination? Tuberculosis (Edinb) 91(2):179–185

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmytro Butov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butov, D., Myasoedov, V., Tkachenko, A., Butova, T. (2023). Immune Approaches in Tuberculosis Treatment. In: Rezaei, N. (eds) Tuberculosis. Integrated Science, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-031-15955-8_15

Download citation

Publish with us

Policies and ethics

Navigation