Configuration of SRR-Metamaterial Based 2 * 1 Array-Type RGW Antenna with Cantilever Beam Switching Technique

  • Conference paper
  • First Online:
International Conference on Reliable Systems Engineering (ICoRSE) - 2022 (ICoRSE 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 534))

Included in the following conference series:

  • 248 Accesses

Abstract

In this article is presented an MEMS based antenna that generates a radio frequency (RF) signal using switching technology. For the MEMS switching technology, a bi-metallic cantilever beam is used, which will deflect given the thermal properties of the materials. Here, the multi-layer cantilever beam will act like a switch triggered by an electric. Given the thermal properties of the cantilever beam, the beam will be deflected, and the current will flow towards the antenna. The antenna is made of a metallic RGW (Ridge Gap Waveguide). Here, the used method provides low losses for high frequencies to offer low losses at 30 GHz. A single structured RGW antenna can provide 5–6 dB, but using the array technique, the gain can be enhanced and bandwidth, so by using the 2 * 1 array technique, the 3 dB gain has been increased. Later on, a meta-material approach was investigated. Using Split-ring resonator (SRR) meta-material, the gain can be increased by more than 5 dB at specific frequencies. All the analysed antenna structures work for a 5 G range from 27–33 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bryzek, J., Peterson, K., McCulley, W.: Micro-machines on the march. IEEE Spectr. 31(5), 20–31 (1994)

    Article  Google Scholar 

  2. Brown, E.R.: RF-MEMS switches for reconfigurable integrated circuits. IEEE Trans. MTT. 46, 1868–1880 (1998)

    Article  Google Scholar 

  3. Larson, L.E., Hackett, R.H., Melendes, M.A., Lohr, R.F.: Micromachined microwave actuator (MIMAC) technology-a new tuning approach for integrated microwave circuits. In: IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium., Boston, MA, USA, pp. 27–30 (1991)

    Google Scholar 

  4. Rebeiz, G.M.: RF Mems Theory, Design and Technology. Wiley, New Jersey (2014)

    Google Scholar 

  5. Ruby, R.C., et al.: High-Q FBAR filters in a wafer-level chip-scale package. In: IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, pp. 184–458 (2002)

    Google Scholar 

  6. Kim, M., Hacker, J.B., Mihailovich, R.E., DeNatale, J.F.: A monolithic MEMS switched dual-path power amplifier. IEEE Microw. Wirel. Compon. Lett. 11(7), 285–286 (2001)

    Article  Google Scholar 

  7. Erdil, E., Topalli, K., Unlu, M., Civi, O.A., Akin, T.: Frequency tunable microstrip patch antenna using RF MEMS technology. IEEE Trans. Antennas Propag. 55(4), 1193–1196 (2007)

    Article  Google Scholar 

  8. Hammad, M.C., Shamim, A.: The Last Barrier, pp.79–91. IEEE Microwave Magazine (2013)

    Google Scholar 

  9. Wright, M.D., Baron, W., Miller, J., Tuss, J., Zeppettella, D., Ali, M.: MEMS reconfigurable broadband patch antenna for conformal applications. IEEE Trans. Antennas Propag. 66(6), 2770–2778 (2018)

    Article  Google Scholar 

  10. Yao, S.S., Cheng, Y.J., Zhou, M.M., Wu, Y.F., Fan, Y.: D-band wideband air-filled plate array antenna with multistage impedance matching based on MEMS micromachining technology. IEEE Trans. Antennas Propag. 68(6), 4502–4511 (2020)

    Article  Google Scholar 

  11. Kumar, P.A, Rao, K.S, Sravani, K.G.: Design and simulation of millimeter wave reconfigurable antenna using iterative meandered RF MEMS switch for 5G mobile communications. Microsyst. Technol. 26(7), 2267–2277 (2020)

    Google Scholar 

  12. Boudkhil, A., Chetioui, M., Benabdallah, N., Benahmed, N.: Development and performance enhancement of MEMS helix antenna for THz applications using 3D HFSS-based efficient electromagnetic optimization. TELKOMNIKA (Telecommun. Comput. Electron. Control) 16(2), 210–216 (2018)

    Article  Google Scholar 

  13. MacCartney, G.R., Zhang, J., Nie, S., Rappaport, T.S.: Path loss models for 5G millimeter wave propagation channels in urban microcells. In: IEEE Global Communications Conference, Atlanta, GA, pp. 3948–3953, December 2013

    Google Scholar 

  14. Al-Alem, Y, Sifat, S.M, Antar, Y.M.M., Kishk, A.A.: High gain low-cost 20 GHz antenna design based on the utilization of diffracted fields from dielectric edges. In: 19th International Symposium on Antenna Technology Applied Electromagnetics (2021)

    Google Scholar 

  15. Pucci, E., Zaman, A.U., Rajo-Iglesias, E., Kildal, P., Kishk, A.: Losses in ridge gap waveguide compared with rectangular waveguides and microstrip transmission lines. In: 4th European Conference on Antennas and Propagation (EuCAP), Barcelona, pp. 1–4, April 2010

    Google Scholar 

  16. Iwasaki, T., Kamoda, H., Derham, T., Kuki, T.: A composite right/left-handed rectangular waveguide with tilted corrugations for millimeter-wave frequency scanning antenna. In: 2008 38th European Microwave Conference, pp. 563–566. IEEE (2008)

    Google Scholar 

  17. Deslandes, D., Wu, K.: Design consideration and performance analysis of substrate integrated waveguide components. In: Proceedings of 32nd European Microwave Conference, pp. 1–4, September 2002

    Google Scholar 

  18. Kildal, P.S., Zaman, A.U., Rajo-Iglesias, E., Alfonso, E., Valero-Nogueira, A.: Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression. IET Microw. Antennas Propag. 5(3), 262–270 (2011)

    Article  Google Scholar 

  19. Shams, S.I., Kishk, A.A.: Wideband coaxial to ridge gap waveguide transition. IEEE Trans. Microw. Theory Techn. 64(12), 4117–4125 (2016)

    Article  Google Scholar 

  20. SharifiSorkherizi, M., Dadgarpour, A., Kishk, A.A.: Planar high-efficiency antenna array using new printed ridge gap waveguide technology. IEEE Trans. Antennas Propag. 65(7), 3772–3776 (2017)

    Article  Google Scholar 

  21. Sifat, S.M., Ali, M.M.M., Shams, S.I., Sebak, A.-R.: High gain bow-tie slot antenna array loaded with grooves based on printed ridge gap waveguide technology. IEEE Access 7, 36177–36185 (2019)

    Article  Google Scholar 

  22. Sifat, S.M., Shams, S.I., Kishk, A.A.: integrated multilayer horn antenna for millimeter-wave application. In: 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 2020, pp. 1433–1434 (2020). https://doi.org/10.1109/IEEECONF35879.2020.9329449

  23. Islam, Md, Islam, M.T., Samsuzzaman, Md., Faruque, M.R.I., Misran, N., Mansor, M.F.: A miniaturized antenna with negative index metamaterial based on modified SRR and CLS unit cell for UWB microwave imaging applications. Materials 8(2), 392–407 (2015)

    Google Scholar 

  24. Kasem, F., Al-Husseini, M., Kabalan, K.Y., El-Hajj, A., Nasser, Y.: A high gain antenna with a single-layer metamaterial superstrate. In: 2013 13th Mediterranean Microwave Symposium (MMS), pp. 1–4. IEEE (2013)

    Google Scholar 

  25. Cao, W., Zhang, B., Liu, A., Tongbin, Y., Guo, D., Wei, Y.: Gain enhancement for broadband periodic endfire antenna by using split-ring resonator structures. IEEE Trans. Antennas Propag. 60(7), 3513–3516 (2012)

    Article  Google Scholar 

  26. Zhao, J., Wang, J.: Correlation reduction in antennas with metamaterial based on newly designed SRRs. In: 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, pp. 981–984. IEEE (2010)

    Google Scholar 

  27. Sifat, S.M., Savaj, R., Stiharu, I., Kishk, A.: Wideband bandpass filter design based on RF-mems technology. Int. J. Mechatron. Appl. Mech. 7, 70–74 (2020)

    Google Scholar 

  28. Elboushi, A., Sebak, A.: High-gain hybrid microstrip/conical horn antenna for MMW applications. EEE Antennas Wirel. Propag. Lett. 11, 129–132 (2012)

    Article  Google Scholar 

  29. Razavi, S.A., Kildal, P.-S., **ang, L., Alós, E.A., Chen, H.: 2 × 2-slot element for 60-GHz planar array antenna realized on two doubled-sided PCBs using SIW cavity and EBG-type soft surface fed by micro-strip ridge gap waveguide. IEEE Trans. Antennas Propag. 62(9), 4564–4573 (2014)

    Article  Google Scholar 

  30. Cao, J., Wang, H., Mou, S., Quan, S., Ye, Z.: W-band high-gain circularly polarized aperture-coupled magneto-electric dipole antenna array with gap waveguide feed network. IEEE Antennas Wirel. Propag. Lett. 16, 2155–2158 (2017)

    Article  Google Scholar 

  31. Alzidani, M., Afifi, I., Asaadi, M., Sebak, A.: Ultra-wideband differential fed hybrid antenna with high-cross polarization discrimination for millimeter wave applications. IEEE Access 8, 80673–80683 (2020)

    Article  Google Scholar 

  32. Ghassemi, N., Wu, K.: Millimeter-wave integrated pyramidal horn antenna made of multilayer printed circuit board (PCB) process. IEEE Trans. Antennas Propag. 60(9), 4432–4435 (2012)

    Article  Google Scholar 

  33. Ali, M.M.M., Sebak, A.: 2-D scanning magneto-electric dipole antenna array fed by RGW Butler matrix. IEEE Trans. Antennas Propag. 66, 6313–6321 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ion Stiharu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fouad, A.M., Ramerzani, G., Stiharu, I. (2023). Configuration of SRR-Metamaterial Based 2 * 1 Array-Type RGW Antenna with Cantilever Beam Switching Technique. In: Cioboată, D.D. (eds) International Conference on Reliable Systems Engineering (ICoRSE) - 2022. ICoRSE 2022. Lecture Notes in Networks and Systems, vol 534. Springer, Cham. https://doi.org/10.1007/978-3-031-15944-2_29

Download citation

Publish with us

Policies and ethics

Navigation