Influence of TPU Lattice Structures on Functional Properties for the Design of Customized Rehabilitation Products

  • Conference paper
  • First Online:
Advances on Mechanics, Design Engineering and Manufacturing IV (JCM 2022)

Abstract

The advantages of AM (Additive Manufacturing) to manufacture complex geometries and custom flexible structures (shape, density, geometry etc.) provides the possibility to use the elastic properties of different materials in order to obtain elastic profiles that could be adapted to a specific customized application. Recent studies established that manufacturing and geometrical parameters like unit cell size and topology, have a defined influence on the stiffness of complex structures like lattice structures, all due to the variation in the volume of material used. This highlights the possibility of designing elastic behavior of structures that could be implemented, for example, in rehabilitation programs which usually use elastic products with highly specific levels of resistance. Therefore, the objective of this works focuses on evaluating the use of the statistical treatment of the data as a guide to predict the behavior of the structures for the design of customized rehabilitation products. A case study based on the use of contour plots as a prediction tool have been carried out. Several TPU lattice specimens were modelled and tested by a simulation of a compression process using finite element analysis (FEA) tools. The reaction force against compression process of several lattice specimens were obtained, showing that the values were within the range of values predicted by the contour plot, validating the prediction. In the same way, the prediction capability with non-studied parameter values, and using a lower number of parameters at the same time were analysed, getting favourable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiménez, M., et al.: Additive Manufacturing Technologies : An Overview about 3D Printing Methods and Future Prospects. Complexity (2019)

    Google Scholar 

  2. Abdulhameed, O., Al-Ahmari, A., Ameen, W., Mian, S.: Additive manufacturing: challenges, trends, and applications. Adv. Mech. Eng. 11(2), 168781401882288 (2019)

    Article  Google Scholar 

  3. Dhinakaran, V., Kumar, K., Ram, P., Ravichandran, M., Vinayagamoorthy, M.: A review on recent advancements in fused deposition modeling. Materials Today: Proceedings 27, 752–756 (2020)

    Google Scholar 

  4. León, M., Marcos-Fernández, Á., León, A.: Impresión 3D Con Materiales Elástoméricos. Revista De Plásticos Modernos 118(747) (2019)

    Google Scholar 

  5. González-Henríquez, C., Sarabia-Vallejos, M., Rodriguez-Hernandez, J.: Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Prog. Polym. Sci. 94, 57–116 (2019)

    Article  Google Scholar 

  6. Pazhamannil, R., Govindan, P.: Current State and Future Scope of Additive Manufacturing Technologies via Vat Photopolymerization. Materials Today: Proceedings (2021)

    Google Scholar 

  7. **ao, J., Gao, Y.: The manufacture of 3D printing of medical grade TPU. Progress in Additive Manufacturing 2(3), 117–123 (2017)

    Article  Google Scholar 

  8. Haryńska, A., Gubanska, I., Kucinska-Lipka, J., Janik, H.: Fabrication and characterization of flexible medical-grade TPU filament for fused deposition modeling 3DP technology. Polymers 10(12), 1304 (2018)

    Google Scholar 

  9. Harris, C., Jursik, N., Rochefort, W., Walker, T.: Additive manufacturing with Soft TPU – adhesion strength in multimaterial flexible joints. Frontiers in Mechanical Eng. 5,1–6 (2019)

    Google Scholar 

  10. León, M., Marcos-Fernández, Á.: Impresión 3D Con Materiales Elástoméricos. Revista De Plásticos Modernos 118(747) (2019)

    Google Scholar 

  11. The Evolution of the 3D Printing Materials Market in 2019: Polymers - FacFox Docs https://facfox.com/docs/kb/the-evolution-of-the-3d-printing-materials-market-in-2019-polymers Accessed 25 Mar 2022

  12. The Evolution of 3D Printing Materials Market: Trends and Opportunities in 2019 - AMFG https://amfg.ai/2019/11/21/the-evolution-of-3d-printing-materials-market-trends-and-opportunities-in-2019/ Accessed 25 Mar 2022

  13. Rodríguez-Parada, L., de la Rosa, S., Mayuet, P.: Influence of 3D-printed TPU properties for the design of elastic products. Polymers, 13(15), 2519 (2021)

    Google Scholar 

  14. Zhu, J., Zhou, H., Wang, C., Zhou, L., Yuan, S., Zhang, W.: A review of topology optimization for additive manufacturing: status and challenges. Chin. J. Aeronaut. 34(1), 91–110 (2021)

    Article  Google Scholar 

  15. Panetta, J., et al.: Elastic textures for additive fabrication. ACM Trans. Graphics 34(4), 1–12 (2015)

    Article  Google Scholar 

  16. Pham, M., Liu, C., Todd, I., Lertthanasarn, J.: Damage-tolerant architected materials inspired by crystal microstructure. Nature 565(7739), 305–311 (2019)

    Article  Google Scholar 

  17. Momeni, K., Mofidian, S., Bardaweel, H.: Systematic design of high-strength multicomponent metamaterials. Mater. Des. 183, 108124 (2019)

    Article  Google Scholar 

  18. Niknam, H., Akbarzadeh, A.: Graded lattice structures: simultaneous enhancement in stiffness and energy absorption. Mater. Des. 196, 109129 (2020)

    Article  Google Scholar 

  19. Davami, K., Mohsenizadeh, M., Munther, M., Palma, T., Beheshti, A., Momeni, K.: Dynamic Energy Absorption Characteristics of Additivelymanufactured Shape-Recovering Lattice Structures. Materials Research Express 6(4), 045302 (2019)

    Google Scholar 

  20. Rahman, O., Koohbor, B.: Optimization of energy absorption performance of polymer honeycombs by density gradation. Composites Part C: Open Access 3, 100052 (2020)

    Google Scholar 

  21. Habib, F., Iovenitti, P., Masood, S., Nikzad, M., Ruan, D.: Design and evaluation of 3D printed polymeric cellular materials for dynamic energy absorption. Int. J. Adv. Manuf. Technol. 103(5–8), 2347–2361 (2019)

    Article  Google Scholar 

  22. Estructuras Aligeradas De Tipo Lattice En Fabricación Aditiva | Blog Ingenius https://eddm.es/blog-ingenius/estructuras-aligeradas-tipo-lattice-fabricacion-aditiva/ Accessed 25 Mar 2022

  23. Bates, S., Farrow, I., Trask, R.: 3D printed polyurethane honeycombs for repeated tailored energy absorption. Mater. Des. 112, 172–183 (2016)

    Article  Google Scholar 

  24. Bhuvanesh-Kumar, M., Sathiya, P.: Methods and materials for additive manufacturing: a critical review on advancements and challenges. Thin-Walled Structures 159, 107228 (2020)

    Google Scholar 

  25. Shen, F., et al.: Energy absorption of thermoplastic polyurethane lattice structures via 3D printing: modeling and prediction. Int. J. Appl. Mech. 8(7), 1–13 (2016)

    Article  Google Scholar 

  26. Bates, S., Farrow, I., Trask, R.: Compressive behaviour of 3D printed thermoplastic polyurethane honeycombs with graded densities. Mater. Des. 162, 130–142 (2019)

    Article  Google Scholar 

  27. Maskery, I., et al.: An investigation into reinforced and functionally graded lattice structures. J. Cell. Plast. 53(2), 151–165 (2017)

    Article  Google Scholar 

  28. Bates , S., Farrow , I., Trask , R.: 3D printed elastic honeycombs with graded density for tailorable energy absorption. In: Park, G. ( Ed.): Active and Passive Smart Structures and Integrated Systems 2016 : Las Vegas , Neva. 9799 (2016)

    Google Scholar 

  29. Schumacher, C., Bickel, B., Rys, J., Marschner, S., Daraio, C., Gross, M.: Microstructures to control elasticity in 3D printing. ACM Trans. Graphics 34(4), 1–13 (2015)

    Article  Google Scholar 

  30. World Health Organization - Rehabilitation.World Health Organization - Rehabilitation https://www.who.int/es/news-room/fact-sheets/detail/rehabilitation Accessed 25 Mar 2022

  31. Lunsford, C., Grindle, G., Salatin, B., Dicianno, B.: Innovations with 3-dimensional printing in physical medicine and rehabilitation: a review of the literature. PM and R 8(12), 1201-1212 (2016)

    Google Scholar 

  32. de la Rosa, S., Mayuet, P., Rodríguez-Parada, L.: An overview of the additive manufacturing capabilities in the development of rehabilitation products with customized elastic properties. IOP Conference Series: Materials Sci. Eng. 1193(1), 12122 (2021)

    Article  Google Scholar 

  33. De La Rosa, S., Mayuet, P.F., Ramón, J., Salgueiro, M., Rodríguez-Parada, L.: Design of customized TPU lattice structures for additive manufacturing: influence on the functional properties in elastic products. Polymers 13(24), 4341 (2021)

    Google Scholar 

  34. Escalona, A., Naranjo, O., Lagos, S., Solís, F.: Parámetros de Normalidad en Fuerzas de Prensión de Mano en Sujetos de Ambos Sexos de 7 a 17 Años de Edad. Revista chilena de pediatría 80(5) (2009)

    Google Scholar 

  35. Material TPU 95A Ultimaker: Filament For 3D Printing Durable And Flexible Components https://ultimaker.com/es/materials/tpu-95a Accessed 25 Mar 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio de la Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de la Rosa, S., Mayuet, P.F., Pardo-Vicente, MA., Rodríguez-Parada, L. (2023). Influence of TPU Lattice Structures on Functional Properties for the Design of Customized Rehabilitation Products. In: Gerbino, S., Lanzotti, A., Martorelli, M., Mirálbes Buil, R., Rizzi, C., Roucoules, L. (eds) Advances on Mechanics, Design Engineering and Manufacturing IV. JCM 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-15928-2_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15928-2_80

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15927-5

  • Online ISBN: 978-3-031-15928-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation