Engineered Geopolymer Composites (EGC) with Ultra-high Strength and Ductility

  • Conference paper
  • First Online:
Strain Hardening Cementitious Composites (SHCC 2022)

Abstract

Engineered Geopolymer Composites (EGC), also known as Strain-Hardening Geopolymer Composites (SHGC), are considered more environmentally friendly than their cement-based counterpart. This study for the first time presents EGC with an ultra-high compressive strength (i.e., over 150 MPa) and an ultra-high tensile ductility (i.e., over 9%) simultaneously. The blended use of fly ash (FA), ground granulated blast slag (GGBS), silica fume, alkali activator, and ultra-high-molecular-weight polyethylene fibers led to the successful development of “Ultra-high-strength & ductility EGC (UHSD-EGC)”. The UHSD-EGC were characterized with excellent multiple cracking and strain-hardening features. In addition, it was found that microstructures of FA-rich geopolymer matrix were looser than those with lower FA/GGBS ratios. The findings arising from this study provided a sound basis for develo** EGC materials with ultra-high mechanical properties for sustainable and resilient infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, V.C.: Engineered Cementitious Composites (ECC) - Bendable Concrete for Sustainable and Resilient Infrastructure. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58438-5_8

  2. Leung, C.K.Y.: Design criteria for pseudoductile fiber-reinforced composites. J. Eng. Mech. 122(1), 10–18 (1996)

    Google Scholar 

  3. Huang, B.T., Wu, J.Q., Yu, J., Dai, J.G., Leung, C.K., Li, V.C.: Seawater sea-sand engineered/strain-hardening cementitious composites (ECC/SHCC): assessment and modeling of crack characteristics. Cem. Concr. Res. 140, 106292 (2021)

    Article  Google Scholar 

  4. Zhu, J.X., Xu, L.Y., Huang, B.T., Weng, K.F., Dai, J.G.: Recent developments in Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) with high and ultra-high strength. Constr. Build. Mater. 342, 127956 (2022)

    Article  Google Scholar 

  5. van Zijl, G.P., et al.: Durability of strain-hardening cement-based composites (SHCC). Mater. Struct. 45(10), 1447–1463 (2012)

    Article  Google Scholar 

  6. Qian, S., Zhou, J., De Rooij, M.R., Schlangen, E., Ye, G., Van Breugel, K.: Self-healing behavior of strain hardening cementitious composites incorporating local waste materials. Cement Concr. Compos. 31(9), 613–621 (2009)

    Article  Google Scholar 

  7. Mechtcherine, V., Millon, O., Butler, M., Thoma, K.: Mechanical behaviour of strain hardening cement-based composites under impact loading. Cement Concr. Compos. 33(1), 1–11 (2011)

    Article  Google Scholar 

  8. Li, Q., Yin, X., Huang, B., Zhang, Y., Xu, S.: Strengthening of the concrete face slabs of dams using sprayable strain-hardening fiber-reinforced cementitious composites. Front. Struct. Civ. Eng. 16, 145–160 (2022). https://doi.org/10.1007/s11709-022-0806-4

    Article  Google Scholar 

  9. Li, Q.H., et al.: Shear interfacial fracture of strain-hardening fiber-reinforced cementitious composites and concrete: a novel approach. Eng. Fract. Mech. 253, 107849 (2021)

    Article  Google Scholar 

  10. Huang, B.T., Li, Q.H., Xu, S.L., Liu, W., Wang, H.T.: Fatigue deformation behavior and fiber failure mechanism of ultra-high toughness cementitious composites in compression. Mater. Des. 157, 457–468 (2018)

    Article  Google Scholar 

  11. Huang, B.T., Li, Q.H., Xu, S.L.: Fatigue deformation model of plain and fiber-reinforced concrete based on Weibull function. J. Struct. Eng. 145(1), 04018234 (2019)

    Article  Google Scholar 

  12. Xu, L.Y., Huang, B.T., Lao, J.C., Yao, J., Li, V.C., Dai, J.G.: Tensile over-saturated cracking of ultra-high-strength engineered cementitious composites (UHS-ECC) with artificial geopolymer aggregates. Cement Concr. Compos. 136, 104896 (2023). https://doi.org/10.1016/j.cemconcomp.2022.104896

  13. Huang, B.T., Zhu, J.X., Weng, K.F., Li, V.C., Dai, J.G.: Ultra-high-strength engineered/strain-hardening cementitious composites (ECC/SHCC): material design and effect of fiber hybridization. Cement Concr. Compos. 129, 104464 (2022)

    Article  Google Scholar 

  14. Xu, L.Y., Huang, B.T., Dai, J.G.: Development of engineered cementitious composites (ECC) using artificial fine aggregates. Constr. Build. Mater. 305, 124742 (2021)

    Article  Google Scholar 

  15. Xu, L.Y., Huang, B.T., Li, V.C., Dai, J.G.: High-strength high-ductility Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) incorporating geopolymer fine aggregates. Cement Concr. Compos. 125, 104296 (2022)

    Article  Google Scholar 

  16. Xu, L.Y., Qian, L.P., Huang, B.T., Dai, J.G.: Development of artificial one-part geopolymer lightweight aggregates by crushing technique. J. Clean. Prod. 315, 128200 (2021)

    Article  Google Scholar 

  17. Xu, L.Y., Huang, B.T., Lao, J.C., Dai, J.G.: Tailoring strain-hardening behavior of high-strength Engineered Cementitious Composites (ECC) using hybrid silica sand and artificial geopolymer aggregates. Mater. Des. 220, 110876 (2022)

    Article  Google Scholar 

  18. Huang, B.T., Wu, J.Q., Yu, J., Dai, J.G., Leung, C.K.: High-strength seawater sea-sand Engineered Cementitious Composites (SS-ECC): mechanical performance and probabilistic modeling. Cement Concr. Compos. 114, 103740 (2020)

    Article  Google Scholar 

  19. Huang, B.T., Wang, Y.T., Wu, J.Q., Yu, J., Dai, J.G., Leung, C.K.: Effect of fiber content on mechanical performance and cracking characteristics of ultra-high-performance seawater sea-sand concrete (UHP-SSC). Adv. Struct. Eng. 24(6), 1182–1195 (2021)

    Article  Google Scholar 

  20. Huang, B.T., Yu, J., Wu, J.Q., Dai, J.G., Leung, C.K.: Seawater sea-sand Engineered Cementitious Composites (SS-ECC) for marine and coastal applications. Compos. Commun. 20, 100353 (2020)

    Article  Google Scholar 

  21. Ohno, M., Li, V.C.: An integrated design method of engineered geopolymer composite. Cement Concr. Compos. 88, 73–85 (2018)

    Article  Google Scholar 

  22. Peng, K.D., Huang, B.T., Xu, L.Y., Hu, R.L., Dai, J.G.: Flexural strengthening of reinforced concrete beams using geopolymer-bonded small-diameter FRP bars. Eng. Struct. 256, 113992 (2022)

    Article  Google Scholar 

  23. Zhang, S., Li, V.C., Ye, G.: Micromechanics-guided development of a slag/fly ash-based strain-hardening geopolymer composite. Cement Concr. Compos. 109, 103510 (2020)

    Article  Google Scholar 

  24. Kan, L.L., Wang, W.S., Liu, W.D., Wu, M.: Development and characterization of fly ash based PVA fiber reinforced engineered geopolymer composites incorporating metakaolin. Cement Concr. Compos. 108, 103521 (2020)

    Article  Google Scholar 

  25. Nguyễn, H.H., Lương, Q.H., Choi, J.I., Ranade, R., Li, V.C., Lee, B.Y.: Ultra-ductile behavior of fly ash-based engineered geopolymer composites with a tensile strain capacity up to 13.7%. Cement Concr. Compos. 122, 104133 (2021)

    Google Scholar 

  26. Deb, P.S., Nath, P., Sarker, P.K.: The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. 1980–2015(62), 32–39 (2014)

    Article  Google Scholar 

  27. Samantasinghar, S., Singh, S.P.: Effect of synthesis parameters on compressive strength of fly ash-slag blended geopolymer. Constr. Build. Mater. 170, 225–234 (2018)

    Article  Google Scholar 

  28. Ling, Y., Wang, K., Li, W., Shi, G., Lu, P.: Effect of slag on the mechanical properties and bond strength of fly ash-based engineered geopolymer composites. Compos. B Eng. 164, 747–757 (2019)

    Article  Google Scholar 

  29. Huang, B.T., Dai, J.G., Weng, K.F., Zhu, J.X., Shah, S.P.: Flexural performance of UHPC–concrete–ECC composite member reinforced with perforated steel plates. J. Struct. Eng. 147(6), 04021065 (2021)

    Article  Google Scholar 

  30. Huang, B.T., Weng, K.F., Zhu, J.X., **ang, Y., Dai, J.G., Li, V.C.: Engineered/strain-hardening cementitious composites (ECC/SHCC) with an ultra-high compressive strength over 210 MPa. Compos. Commun. 26, 100775 (2021)

    Article  Google Scholar 

  31. Li, V.C., Leung, C.K.: Steady-state and multiple cracking of short random fiber composites. J. Eng. Mech. 118(11), 2246–2264 (1992)

    Google Scholar 

  32. Lao, J.C., Xu, L.Y., Huang, B.T., Dai, J.G., Shah, S.P.: Development of strain-hardening Ultra-High-Performance Geopolymer Concrete (UHPGC) using steel fibers. Compos. Commun. 30, 101081 (2022)

    Article  Google Scholar 

  33. Lao, J.C., Huang, B.T., Fang, Y., Xu, L.Y., Dai, J.G., Shah, S.P.: Strain-hardening alkali-activated fly ash/slag composites with ultra-high compressive strength and ultra-high tensile ductility. Cement Concr. Res. 165, 107075 (2023). https://doi.org/10.1016/j.cemconres.2022.107075

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo-Tao Huang or Jian-Guo Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lao, JC., Huang, BT., Xu, LY., Dai, JG., Shah, S.P. (2023). Engineered Geopolymer Composites (EGC) with Ultra-high Strength and Ductility. In: Kunieda, M., Kanakubo, T., Kanda, T., Kobayashi, K. (eds) Strain Hardening Cementitious Composites. SHCC 2022. RILEM Bookseries, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-031-15805-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15805-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15804-9

  • Online ISBN: 978-3-031-15805-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation