Morphotectonics Characteristics and Its Control on Soil Erosion

  • Chapter
  • First Online:
Climate Change Impact on Soil Erosion in Sub-tropical Environment

Abstract

The influence of the “morphotectonic characteristics” on “erosion potentiality” assessment has been estimated in this chapter. The related parameter has been selected with considering recent literatures related to this field. In this perspective, the “evidential belief function (EBF)”, “logistic regression (LR)” and ensemble of “EBF-LR” have been considered. Here, the efficiency of ensemble model is quite high then any single alone model, i.e. “EBF” and “LR”. The “area under curve (AUC)” values from “receiver operating characteristics (ROC)’ for ensemble of “EBF-LR” are 0.99 and 0.92, respectively. The western and central parts of this region are related with an erosion potential zone that ranges from very high to high. So, the special emphasis regarding the suitable management strategies has to be taken into consideration for this region to overcome this type of situation. This sort of data aids decision-makers in implementing the most appropriate development initiatives in vulnerable areas. The role of future researchers is to quantifying the erosion potentiality with maximum possible accuracy and considering maximum-related parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed B (2015) Landslide susceptibility map** using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh. Landslides 12:1077–1095

    Article  Google Scholar 

  • Al-Ghamdi AS (2002) Using logistic regression to estimate the influence of accident factors on accident severity. Accid Anal Prev 34:729–741

    Article  PubMed  Google Scholar 

  • Althuwaynee OF, Pradhan B, Park H-J, Lee JH (2014) A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility map**. CATENA 114:21–36. https://doi.org/10.1016/j.catena.2013.10.011

    Article  Google Scholar 

  • Amatulli G, Domisch S, Tuanmu M-N et al (2018) A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci Data 5:1–15

    Article  Google Scholar 

  • Amozegar M, Khorasani K (2016) An ensemble of dynamic neural network identifiers for fault detection and isolation of gas turbine engines. Neural Netw 76:106–121

    Article  CAS  PubMed  Google Scholar 

  • Angima S, Stott D, O’neill M et al (2003) Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agr Ecosyst Environ 97:295–308

    Article  Google Scholar 

  • Arabameri A, Asadi Nalivan O, Chandra Pal S et al (2020) Novel machine learning approaches for modelling the gully erosion susceptibility. Rem Sens 12:2833. https://doi.org/10.3390/rs12172833

    Article  ADS  Google Scholar 

  • Arabameri A, Pal SC, Rezaie F et al (2021) Comparison of multi-criteria and artificial intelligence models for land-subsidence susceptibility zonation. J Environ Manage 284:112067

    Article  PubMed  Google Scholar 

  • Band SS, Janizadeh S, Chandra Pal S et al (2020) Novel ensemble approach of deep learning neural network (DLNN) model and particle swarm optimization (PSO) algorithm for prediction of gully erosion susceptibility. Sensors 20:5609

    Article  ADS  CAS  PubMed Central  Google Scholar 

  • Başakın EE, Ekmekcioğlu Ö, Çıtakoğlu H, Özger M (2021) A new insight to the wind speed forecasting: robust multi-stage ensemble soft computing approach based on pre-processing uncertainty assessment. Neural Comput Appl 1–30

    Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci J 24:43–69

    Article  Google Scholar 

  • Bhattacharyya K (2011) The Lower Damodar River, India: understanding the human role in changing fluvial environment. Springer Science & Business Media

    Google Scholar 

  • Birjais R, Mourya AK, Chauhan R, Kaur H (2019) Prediction and diagnosis of future diabetes risk: a machine learning approach. SN Appl Sci 1:1–8

    Article  Google Scholar 

  • Bracken LJ (2010) Overland flow and soil erosion. In: Sediment cascades. Wiley, Chichester, pp 181–216

    Google Scholar 

  • Brewer CA, Pickle L (2002) Evaluation of methods for classifying epidemiological data on choropleth maps in series. Ann Assoc Am Geogr 92:662–681

    Article  Google Scholar 

  • Bruce P, Bruce A (2017) Practical statistics for data scientists: 50 essential concepts. O’Reilly Media, Inc.

    Google Scholar 

  • Chakrabortty R, Pal SC, Chowdhuri I et al (2020a) Assessing the importance of static and dynamic causative factors on erosion potentiality using SWAT, EBF with uncertainty and plausibility, logistic regression and novel ensemble model in a sub-tropical environment. J Indian Soc Remote Sens 48:765–789. https://doi.org/10.1007/s12524-020-01110-x

    Article  Google Scholar 

  • Chakrabortty R, Pal SC, Sahana M et al (2020b) Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India. Nat Hazards 104:1259–1294

    Article  Google Scholar 

  • Chakrabortty R, Pal SC, Santosh M et al (2021) Gully erosion and climate induced chemical weathering for vulnerability assessment in sub-tropical environment. Geomorphology 108027

    Google Scholar 

  • Chowdhuri I, Pal SC, Chakrabortty R (2020) Flood susceptibility map** by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Adv Space Res 65:1466–1489

    Article  ADS  Google Scholar 

  • Costache R, Hong H, Wang Y (2019) Identification of torrential valleys using GIS and a novel hybrid integration of artificial intelligence, machine learning and bivariate statistics. CATENA 183:104179

    Article  Google Scholar 

  • Costache R, Hong H, Pham QB (2020) Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Sci Total Environ 711:134514. https://doi.org/10.1016/j.scitotenv.2019.134514

    Article  ADS  CAS  PubMed  Google Scholar 

  • Del Hoyo LV, Isabel MPM, Vega FJM (2011) Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data. Eur J Forest Res 130:983–996

    Article  Google Scholar 

  • Dempster AP (2008) Upper and lower probabilities induced by a multivalued map**. In: Classic works of the Dempster-Shafer theory of belief functions. Springer, Berlin, pp 57–72

    Google Scholar 

  • Ettazarini S (2021) GIS-based land suitability assessment for check dam site location, using topography and drainage information: a case study from Morocco. Environ Earth Sci 80:1–17

    Article  Google Scholar 

  • Feizizadeh B, Blaschke T (2014) An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility map**. Int J Geogr Inf Sci 28:610–638. https://doi.org/10.1080/13658816.2013.869821

    Article  PubMed  PubMed Central  Google Scholar 

  • Feizizadeh B, Blaschke T, Nazmfar H (2014) GIS-based ordered weighted averaging and Dempster-Shafer methods for landslide susceptibility map** in the Urmia Lake Basin, Iran. Int J Digit Earth 7:688–708

    Article  Google Scholar 

  • Foster G, Young R, Römkens M, Onstad C (1985) Processes of soil erosion by water. In: Soil erosion and crop productivity, pp 137–162

    Google Scholar 

  • García-Ruiz JM (2010) The effects of land uses on soil erosion in Spain: a review. CATENA 81:1–11

    Article  Google Scholar 

  • Hembram TK, Paul GC, Saha S (2020) Modelling of gully erosion risk using new ensemble of conditional probability and index of entropy in Jainti River basin of Chotanagpur Plateau Fringe Area, India. Appl Geomat 12:337–360

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

    Article  Google Scholar 

  • Hudson NW (2015) Soil conservation. Scientific Publishers

    Google Scholar 

  • Jha V, Kapat S (2009) Rill and gully erosion risk of lateritic terrain in South-Western Birbhum District, West Bengal, India. Sociedade & Natureza 21:141–158

    Article  Google Scholar 

  • Kocaguneli E, Menzies T, Keung JW (2011) On the value of ensemble effort estimation. IEEE Trans Softw Eng 38:1403–1416

    Article  Google Scholar 

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility map** using GIS and remote sensing data. Int J Remote Sens 26:1477–1491

    Article  Google Scholar 

  • Leopold LB, Wolman MG, Miller JP, Wohl E (2020) Fluvial processes in geomorphology. Courier Dover Publications

    Google Scholar 

  • Lisle I, Rose C, Hogarth W et al (1998) Stochastic sediment transport in soil erosion. J Hydrol 204:217–230

    Article  Google Scholar 

  • Mahala A (2018) Soil erosion estimation using RUSLE and GIS techniques—a study of a plateau fringe region of tropical environment. Arab J Geosci 11:1–18

    Article  Google Scholar 

  • Mahala A (2020) Land degradation processes of Silabati river basin, West Bengal, India: a physical perspective. In: Gully erosion studies from India and surrounding regions. Springer, Berlin, pp 265–278

    Google Scholar 

  • Malpica JA, Alonso MC, Sanz MA (2007) Dempster-Shafer theory in geographic information systems: a survey. Expert Syst Appl 32:47–55

    Article  Google Scholar 

  • Måren IE, Karki S, Prajapati C et al (2015) Facing north or south: does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? J Arid Environ 121:112–123

    Article  Google Scholar 

  • Mitchell JK, Soga K (2005) Fundamentals of soil behavior. Wiley, New York

    Google Scholar 

  • Moeini A, Zarandi N, Pazira E, Badiollahi Y (2015) The relationship between drainage density and soil erosion rate: a study of five watersheds in Ardebil Province, Iran. WIT Trans Ecol Environ 1:129–138

    Article  Google Scholar 

  • Moharana P, Santra P, Singh D, et al (2016) ICAR-Central Arid Zone Research Institute, Jodhpur: erosion processes and desertification in the Thar Desert of India

    Google Scholar 

  • Moore ID, Wilson JP (1992) Length-slope factors for the revised universal soil loss equation: simplified method of estimation. J Soil Water Conserv 47:423–428

    Google Scholar 

  • Morgan RPC (2009) Soil erosion and conservation. Wiley, New York

    Google Scholar 

  • Mukherjee S, Dey A, Sanyal S et al (2017) Petrology and U-Pb geochronology of zircon in a suite of charnockitic gneisses from parts of the Chotanagpur Granite Gneiss Complex (CGGC): evidence for the reworking of a Mesoproterozoic basement during the formation of the Rodinia supercontinent. Geol Soc Lond Spec Publ 457:197–231

    Article  Google Scholar 

  • Nadal-Romero E, Petrlic K, Verachtert E et al (2014) Effects of slope angle and aspect on plant cover and species richness in a humid Mediterranean badland. Earth Surf Proc Land 39:1705–1716

    Article  ADS  Google Scholar 

  • Narayana DV, Babu R (1983) Estimation of soil erosion in India. J Irrig Drain Eng 109:419–434

    Article  Google Scholar 

  • North MA (2009) A method for implementing a statistically significant number of data classes in the Jenks algorithm. IEEE, pp 35–38

    Google Scholar 

  • Osman KT (2014) Soil erosion by water. In: Soil degradation, conservation and remediation. Springer, Berlin, pp 69–101

    Google Scholar 

  • Pal S (2016) Identification of soil erosion vulnerable areas in Chandrabhaga river basin: a multi-criteria decision approach. Model Earth Syst Environ 2:5. https://doi.org/10.1007/s40808-015-0052-z

    Article  Google Scholar 

  • Pal SC, Chakrabortty R, Roy P et al (2021) Changing climate and land use of 21st century influences soil erosion in India. Gondwana Res 94:164–185. https://doi.org/10.1016/j.gr.2021.02.021

    Article  ADS  Google Scholar 

  • Pearl J (1990) Reasoning under uncertainty. Ann Rev Comput Sci 4:37–72

    Article  Google Scholar 

  • Peng X, Shi D, Jiang D et al (2014) Runoff erosion process on different underlying surfaces from disturbed soils in the Three Gorges Reservoir Area, China. CATENA 123:215–224

    Article  Google Scholar 

  • Pimentel D (1993) World soil erosion and conservation. Cambridge University Press

    Book  Google Scholar 

  • Poesen J (1986) Surface sealing as influenced by slope angle and position of simulated stones in the top layer of loose sediments. Earth Surf Proc Land 11:1–10

    Article  ADS  Google Scholar 

  • Pradhan B, Lee S (2010) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60:1037–1054

    Article  Google Scholar 

  • Ranzato M, Huang FJ, Boureau Y-L, LeCun Y (2007) Unsupervised learning of invariant feature hierarchies with applications to object recognition. IEEE, pp 1–8

    Google Scholar 

  • Ravi S, Breshears DD, Huxman TE, D’Odorico P (2010) Land degradation in drylands: interactions among hydrologic–aeolian erosion and vegetation dynamics. Geomorphology 116:236–245

    Article  ADS  Google Scholar 

  • Roy P, Chandra Pal S, Chakrabortty R et al (2020) Threats of climate and land use change on future flood susceptibility. J Clean Prod 272:122757. https://doi.org/10.1016/j.jclepro.2020.122757

    Article  Google Scholar 

  • Sagi O, Rokach L (2018) Ensemble learning: a survey. Wires Data Min Knowl Discov 8:e1249

    Google Scholar 

  • Saha S, Gayen A, Pourghasemi HR, Tiefenbacher JP (2019) Identification of soil erosion-susceptible areas using fuzzy logic and analytical hierarchy process modeling in an agricultural watershed of Burdwan district, India. Environ Earth Sci 78:649

    Article  Google Scholar 

  • Saroha J (2017) Soil erosion: causes, extent, and management in India. Int J Creat Res Thoughts 5:1321–1330

    Google Scholar 

  • Sasidharan S, Bradford SA, Šimůnek J et al (2018) Evaluating drywells for stormwater management and enhanced aquifer recharge. Adv Water Resour 116:167–177

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence. Princeton University Press

    Book  MATH  Google Scholar 

  • Singh M, Hartsch K (2019) Basics of soil erosion. In: Watershed hydrology, management and modeling. CRC Press, Boca Raton, pp 1–61

    Google Scholar 

  • Siswanto S, Sule M (2019) The impact of slope steepness and land use type on soil properties in Cirandu sub-sub catchment, Citarum Watershed. IOP Publishing, p 012059

    Google Scholar 

  • Srinivasarao C, Lal R, Kundu S et al (2014) Soil carbon sequestration in rainfed production systems in the semiarid tropics of India. Sci Total Environ 487:587–603

    Article  ADS  CAS  PubMed  Google Scholar 

  • Strickland J (2015) Predictive analytics using R. Lulu.com

    Google Scholar 

  • Tehrany MS, Shabani F, Javier DN, Kumar L (2017) Soil erosion susceptibility map** for current and 2100 climate conditions using evidential belief function and frequency ratio. Geomat Nat Haz Risk 8:1695–1714

    Article  Google Scholar 

  • UNEP (1997) World atlas of desertification 2ED

    Google Scholar 

  • Vijith H, Dodge-Wan D (2019) Modelling terrain erosion susceptibility of logged and regenerated forested region in northern Borneo through the analytical hierarchy process (AHP) and GIS techniques. Geoenviron Disasters 6:1–18

    Article  Google Scholar 

  • **ao H, Liu G, Liu P et al (2017) Sediment transport capacity of concentrated flows on steep loessial slope with erodible beds. Sci Rep 7:1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Chandra Pal .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pal, S.C., Chakrabortty, R. (2022). Morphotectonics Characteristics and Its Control on Soil Erosion. In: Climate Change Impact on Soil Erosion in Sub-tropical Environment . Geography of the Physical Environment. Springer, Cham. https://doi.org/10.1007/978-3-031-15721-9_3

Download citation

Publish with us

Policies and ethics

Navigation