Mammarenavirus Genetic Diversity and Its Biological Implications

  • Chapter
  • First Online:
Viral Fitness and Evolution

Abstract

Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aebischer T, Moskophidis D, Rohrer UH, Zinkernagel RM, Hengartner H (1991) In vitro selection of lymphocytic choriomeningitis virus escape mutants by cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 88:11047–11051

    Article  CAS  Google Scholar 

  • Ahmed R, Oldstone MB (1988) Organ-specific selection of viral variants during chronic infection. J Exp Med 167:1719–1724

    Article  CAS  Google Scholar 

  • Ahmed R, Salmi A, Butler LD, Chiller JM, Oldstone MB (1984) Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J Exp Med 160:521–540

    Article  CAS  Google Scholar 

  • Ahmed R, Simon RS, Matloubian M, Kolhekar SR, Southern PJ, Freedman DM (1988) Genetic analysis of in vivo-selected viral variants causing chronic infection: importance of mutation in the L RNA segment of lymphocytic choriomeningitis virus. J Virol 62:3301–3308

    Article  CAS  Google Scholar 

  • Ahmed R, Hahn CS, Somasundaram T, Villarete L, Matloubian M, Strauss JH (1991) Molecular basis of organ-specific selection of viral variants during chronic infection. J Virol 65:4242–4247

    Article  CAS  Google Scholar 

  • Albarino CG, Palacios G, Khristova ML, Erickson BR, Carroll SA, Comer JA, Hui J, Briese T, St George K, Ksiazek TG, Lipkin WI, Nichol ST (2010) High diversity and ancient common ancestry of lymphocytic choriomeningitis virus. Emerg Infect Dis 16:1093–1100

    Article  Google Scholar 

  • Andersen KG, Shapiro BJ, Matranga CB, Sealfon R, Lin AE, Moses LM, Folarin OA, Goba A, Odia I, Ehiane PE, Momoh M, England EM, Winnicki S, Branco LM, Gire SK, Phelan E, Tariyal R, Tewhey R, Omoniwa O, Fullah M, Fonnie R, Fonnie M, Kanneh L, Jalloh S, Gbakie M, Saffa S, Karbo K, Gladden AD, Qu J, Stremlau M, Nekoui M, Finucane HK, Tabrizi S, Vitti JJ, Birren B, Fitzgerald M, McCowan C, Ireland A, Berlin AM, Bochicchio J, Tazon-Vega B, Lennon NJ, Ryan EM, Bjornson Z, Milner DA Jr, Lukens AK, Broodie N, Rowland M, Heinrich M, Akdag M et al (2015) Clinical sequencing uncovers origins and evolution of Lassa virus. Cell 162:738–750

    Article  CAS  Google Scholar 

  • Archer AM, Rico-Hesse R (2002) High genetic divergence and recombination in Arenaviruses from the Americas. Virology 304:274–281

    Article  CAS  Google Scholar 

  • Armstrong CL, Lillie RD (1934) Experimental lymphocytic choriomeningitis of monkeys and mice produced by a virus encountered in studies of the 1933 St. Louis encephalitis epidemic. Public Health Rep 1896–1970:1019–1027

    Article  Google Scholar 

  • Ashburn TT, Thor KB (2004) Drug repositioning: identifying and develo** new uses for existing drugs. Nat Rev Drug Discov 3:673–683

    Article  CAS  Google Scholar 

  • Baranowski E, Ruiz-Jarabo CM, Sevilla N, Andreu D, Beck E, Domingo E (2000) Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J Virol 74:1641–1647

    Article  CAS  Google Scholar 

  • Barnes KG, Lachenauer AE, Nitido A, Siddiqui S, Gross R, Beitzel B, Siddle KJ, Freije CA, Dighero-Kemp B, Mehta SB, Carter A, Uwanibe J, Ajogbasile F, Olumade T, Odia I, Sandi JD, Momoh M, Metsky HC, Boehm CK, Lin AE, Kemball M, Park DJ, Branco L, Boisen M, Sullivan B, Amare MF, Tiamiyu AB, Parker ZF, Iroezindu M, Grant DS, Modjarrad K, Myhrvold C, Garry RF, Palacios G, Hensley LE, Schaffner SF, Happi CT, Colubri A, Sabeti PC (2020) Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time. Nat Commun 11:4131

    Article  CAS  Google Scholar 

  • Barton LL, Mets MB (2001) Congenital lymphocytic choriomeningitis virus infection: decade of rediscovery. Clin Infect Dis 33:370–374

    Article  CAS  Google Scholar 

  • Barton LL, Mets MB, Beauchamp CL (2002) Lymphocytic choriomeningitis virus: emerging fetal teratogen. Am J Obstet Gynecol 187:1715–1716

    Article  Google Scholar 

  • Beaucourt S, Borderia AV, Coffey LL, Gnadig NF, Sanz-Ramos M, Beeharry Y, Vignuzzi M (2011) Isolation of fidelity variants of RNA viruses and characterization of virus mutation frequency. J Vis Exp 2953. https://doi.org/10.3791/2953:2953-2982

  • Bergthaler A, Flatz L, Hegazy AN, Johnson S, Horvath E, Lohning M, Pinschewer DD (2010) Viral replicative capacity is the primary determinant of lymphocytic choriomeningitis virus persistence and immunosuppression. Proc Natl Acad Sci U S A 107:21641–21646

    Article  CAS  Google Scholar 

  • Beyer WR, Popplau D, Garten W, von Laer D, Lenz O (2003) Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J Virol 77:2866–2872

    Article  CAS  Google Scholar 

  • Blasdell KR, Becker SD, Hurst J, Begon M, Bennett M (2008) Host range and genetic diversity of arenaviruses in rodents, United Kingdom. Emerg Infect Dis 14:1455–1458

    Article  Google Scholar 

  • Bodewes R, Kik MJ, Raj VS, Schapendonk CM, Haagmans BL, Smits SL, Osterhaus AD (2013) Detection of novel divergent arenaviruses in boid snakes with inclusion body disease in The Netherlands. J Gen Virol 94:1206–1210

    Article  CAS  Google Scholar 

  • Boisen ML, Uyigue E, Aiyepada J, Siddle KJ, Oestereich L, Nelson DKS, Bush DJ, Rowland MM, Heinrich ML, Eromon P, Kayode AT, Odia I, Adomeh DI, Muoebonam EB, Akhilomen P, Okonofua G, Osiemi B, Omoregie O, Airende M, Agbukor J, Ehikhametalor S, Aire CO, Duraffour S, Pahlmann M, Bohm W, Barnes KG, Mehta S, Momoh M, Sandi JD, Goba A, Folarin OA, Ogbaini-Emovan E, Asogun DA, Tobin EA, Akpede GO, Okogbenin SA, Okokhere PO, Grant DS, Schieffelin JS, Sabeti PC, Gunther S, Happi CT, Branco LM, Garry RF (2020) Field evaluation of a Pan-Lassa rapid diagnostic test during the 2018 Nigerian Lassa fever outbreak. Sci Rep 10:8724

    Article  CAS  Google Scholar 

  • Bonthius DJ (2009) Lymphocytic choriomeningitis virus: a prenatal and postnatal threat. Adv Pediatr 56:75–86

    Article  Google Scholar 

  • Bonthius DJ (2012) Lymphocytic choriomeningitis virus: an underrecognized cause of neurologic disease in the fetus, child, and adult. Semin Pediatr Neurol 19:89–95

    Article  Google Scholar 

  • Bonthius DJ, Perlman S (2007) Congenital viral infections of the brain: lessons learned from lymphocytic choriomeningitis virus in the neonatal rat. PLoS Pathog 3:e149

    Article  Google Scholar 

  • Bonwitt J, Saez AM, Lamin J, Ansumana R, Dawson M, Buanie J, Lamin J, Sondufu D, Borchert M, Sahr F, Fichet-Calvet E, Brown H (2017) At home with mastomys and rattus: human-rodent interactions and potential for primary transmission of Lassa virus in domestic spaces. Am J Trop Med Hyg 96:935–943

    Google Scholar 

  • Borden KL, Campbell Dwyer EJ, Salvato MS (1998) An arenavirus RING (zinc-binding) protein binds the oncoprotein promyelocyte leukemia protein (PML) and relocates PML nuclear bodies to the cytoplasm. J Virol 72:758–766

    Article  CAS  Google Scholar 

  • Borrow P, Evans CF, Oldstone MB (1995) Virus-induced immunosuppression: immune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression. J Virol 69:1059–1070

    Article  CAS  Google Scholar 

  • Botten J, Alexander J, Pasquetto V, Sidney J, Barrowman P, Ting J, Peters B, Southwood S, Stewart B, Rodriguez-Carreno MP, Mothe B, Whitton JL, Sette A, Buchmeier MJ (2006) Identification of protective Lassa virus epitopes that are restricted by HLA-A2. J Virol 80:8351–8361

    Article  CAS  Google Scholar 

  • Bowen MD, Peters CJ, Nichol ST (1996) The phylogeny of New World (Tacaribe complex) arenaviruses. Virology 219:285–290

    Article  CAS  Google Scholar 

  • Bowen MD, Peters CJ, Nichol ST (1997) Phylogenetic analysis of the Arenaviridae: patterns of virus evolution and evidence for cospeciation between arenaviruses and their rodent hosts. Mol Phylogenet Evol 8:301–316

    Article  CAS  Google Scholar 

  • Bowen MD, Rollin PE, Ksiazek TG, Hustad HL, Bausch DG, Demby AH, Bajani MD, Peters CJ, Nichol ST (2000) Genetic diversity among Lassa virus strains. J Virol 74:6992–7004

    Article  CAS  Google Scholar 

  • Bray M (2005) Pathogenesis of viral hemorrhagic fever. Curr Opin Immunol 17:399–403

    Article  CAS  Google Scholar 

  • Briese T, Paweska JT, McMullan LK, Hutchison SK, Street C, Palacios G, Khristova ML, Weyer J, Swanepoel R, Egholm M, Nichol ST, Lipkin WI (2009) Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog 5:e1000455

    Article  Google Scholar 

  • Brouat C, Loiseau A, Kane M, Ba K, Duplantier JM (2007) Population genetic structure of two ecologically distinct multimammate rats: the commensal Mastomys natalensis and the wild Mastomys erythroleucus in southeastern Senegal. Mol Ecol 16:2985–2997

    Article  CAS  Google Scholar 

  • Brown RJ, Peters PJ, Caron C, Gonzalez-Perez MP, Stones L, Ankghuambom C, Pondei K, McClure CP, Alemnji G, Taylor S, Sharp PM, Clapham PR, Ball JK (2011) Intercompartmental recombination of HIV-1 contributes to env intrahost diversity and modulates viral tropism and sensitivity to entry inhibitors. J Virol 85:6024–6037

    Article  CAS  Google Scholar 

  • Brunotte L, Lelke M, Hass M, Kleinsteuber K, Becker-Ziaja B, Gunther S (2011) Domain structure of Lassa virus L protein. J Virol 85:324–333

    Article  CAS  Google Scholar 

  • Buchmeier MJ, Peters, CJ, de la Torre JC (2007) Arenaviridae: the viruses and their replication. In: Knipe DM, Holey PM (ed) Fields virology, 5th ed, vol 2, pp 1792–1827

    Google Scholar 

  • Buckley SM, Casals J (1970) Lassa fever, a new virus disease of man from West Africa. 3. Isolation and characterization of the virus. Am J Trop Med Hyg 19:680–691

    Article  CAS  Google Scholar 

  • Buesa-Gomez J, Teng MN, Oldstone CE, Oldstone MB, de la Torre JC (1996) Variants able to cause growth hormone deficiency syndrome are present within the disease-nil WE strain of lymphocytic choriomeningitis virus. J Virol 70:8988–8992

    Article  CAS  Google Scholar 

  • Cabot B, Martell M, Esteban JI, Sauleda S, Otero T, Esteban R, Guardia J, Gomez J (2000) Nucleotide and amino acid complexity of hepatitis C virus quasispecies in serum and liver. J Virol 74:805–811

    Article  CAS  Google Scholar 

  • Cajimat MN, Fulhorst CF (2004) Phylogeny of the Venezuelan arenaviruses. Virus Res 102:199–206

    Article  CAS  Google Scholar 

  • Cajimat MN, Milazzo ML, Hess BD, Rood MP, Fulhorst CF (2007) Principal host relationships and evolutionary history of the North American arenaviruses. Virology 367:235–243

    Article  CAS  Google Scholar 

  • Campbell Dwyer EJ, Lai H, MacDonald RC, Salvato MS, Borden KL (2000) The lymphocytic choriomeningitis virus RING protein Z associates with eukaryotic initiation factor 4E and selectively represses translation in a RING-dependent manner. J Virol 74:3293–3300

    Article  CAS  Google Scholar 

  • Cao W, Henry MD, Borrow P, Yamada H, Elder JH, Ravkov EV, Nichol ST, Compans RW, Campbell KP, Oldstone MB (1998) Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus [see comments]. Science 282:2079–2081

    Article  CAS  Google Scholar 

  • Carrion R Jr, Patterson JL, Johnson C, Gonzales M, Moreira CR, Ticer A, Brasky K, Hubbard GB, Moshkoff D, Zapata J, Salvato MS, Lukashevich IS (2007) A ML29 reassortant virus protects guinea pigs against a distantly related Nigerian strain of Lassa virus and can provide sterilizing immunity. Vaccine 25:4093–4102

    Article  CAS  Google Scholar 

  • Cashman KA, Smith MA, Twenhafel NA, Larson RA, Jones KF, Allen RD 3rd, Dai D, Chinsangaram J, Bolken TC, Hruby DE, Amberg SM, Hensley LE, Guttieri MC (2011) Evaluation of Lassa antiviral compound ST-193 in a guinea pig model. Antiviral Res 90:70–79

    Article  CAS  Google Scholar 

  • Charrel RN, de Lamballerie X (2003) Arenaviruses other than Lassa virus. Antiviral Res 57:89–100

    Article  CAS  Google Scholar 

  • Charrel RN, de Lamballerie X (2010) Zoonotic aspects of arenavirus infections. Vet Microbiol 140:213–220

    Article  CAS  Google Scholar 

  • Charrel RN, de Lamballerie X, Fulhorst CF (2001) The Whitewater Arroyo virus: natural evidence for genetic recombination among Tacaribe serocomplex viruses (family Arenaviridae). Virology 283:161–166

    Article  CAS  Google Scholar 

  • Charrel RN, Feldmann H, Fulhorst CF, Khelifa R, de Chesse R, de Lamballerie X (2002) Phylogeny of New World arenaviruses based on the complete coding sequences of the small genomic segment identified an evolutionary lineage produced by intrasegmental recombination. Biochem Biophys Res Commun 296:1118–1124

    Article  CAS  Google Scholar 

  • Charrel RN, Lemasson JJ, Garbutt M, Khelifa R, De Micco P, Feldmann H, de Lamballerie X (2003) New insights into the evolutionary relationships between arenaviruses provided by comparative analysis of small and large segment sequences. Virology 317:191–196

    Article  CAS  Google Scholar 

  • Charrel RN, de Lamballerie X, Emonet S (2008) Phylogeny of the genus Arenavirus. Curr Opin Microbiol 11:362–368

    Article  Google Scholar 

  • Cheng-Mayer C, Weiss C, Seto D, Levy JA (1989) Isolates of human immunodeficiency virus type 1 from the brain may constitute a special group of the AIDS virus. Proc Natl Acad Sci U S A 86:8575–8579

    Article  CAS  Google Scholar 

  • Ciurea A, Klenerman P, Hunziker L, Horvath E, Senn BM, Ochsenbein AF, Hengartner H, Zinkernagel RM (2000) Viral persistence in vivo through selection of neutralizing antibody-escape variants. Proc Natl Acad Sci U S A 97:2749–2754

    Article  CAS  Google Scholar 

  • Ciurea A, Hunziker L, Zinkernagel RM, Hengartner H (2001) Viral escape from the neutralizing antibody response: the lymphocytic choriomeningitis virus model. Immunogenetics 53:185–189

    Article  CAS  Google Scholar 

  • Colangelo P, Verheyen E, Leirs H, Tatard C, Denys C, Dobigny G, Duplantier J-M, Brouat C, Granjon L, Lecompte E (2013) A mitochondrial phylogeographic scenario for the most widespread African rodent, Mastomys natalensis. Biol J Lin Soc 108:901–916

    Article  Google Scholar 

  • Cornu TI, de la Torre JC (2001) RING finger Z protein of lymphocytic choriomeningitis virus (LCMV) inhibits transcription and RNA replication of an LCMV S-segment minigenome. J Virol 75:9415–9426

    Article  CAS  Google Scholar 

  • Cornu TI, de la Torre JC (2002) Characterization of the arenavirus RING finger Z protein regions required for Z-mediated inhibition of viral RNA synthesis. J Virol 76:6678–6688

    Article  CAS  Google Scholar 

  • Cuypers LN, Baird SJE, Hanova A, Locus T, Katakweba AS, Gryseels S, Bryja J, Leirs H, Gouy de Bellocq J (2020) Three arenaviruses in three subspecific natal multimammate mouse taxa in Tanzania: same host specificity, but different spatial genetic structure? Virus Evol 6:veaa039

    Google Scholar 

  • Damonte EB, Coto CE (2002) Treatment of arenavirus infections: from basic studies to the challenge of antiviral therapy. Adv Virus Res 58:125–155

    Article  CAS  Google Scholar 

  • Damonte EB, Mersich SE, Coto CE (1983) Response of cells persistently infected with arenaviruses to superinfection with homotypic and heterotypic viruses. Virology 129:474–478

    Article  CAS  Google Scholar 

  • Dapp MJ, Clouser CL, Patterson S, Mansky LM (2009) 5-Azacytidine can induce lethal mutagenesis in human immunodeficiency virus type 1. J Virol 83:11950–11958

    Article  CAS  Google Scholar 

  • Dapp MJ, Holtz CM, Mansky LM (2012) Concomitant lethal mutagenesis of human immunodeficiency virus type 1. J Mol Biol 419:158–170

    Article  CAS  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    Article  CAS  Google Scholar 

  • de la Torre JC, Holland JJ (1990) RNA virus quasispecies populations can suppress vastly superior mutant progeny. J Virol 64:6278–6281

    Article  Google Scholar 

  • Deforges S, Evlashev A, Perret M, Sodoyer M, Pouzol S, Scoazec JY, Bonnaud B, Diaz O, Paranhos-Baccala G, Lotteau V, Andre P (2004) Expression of hepatitis C virus proteins in epithelial intestinal cells in vivo. J Gen Virol 85:2515–2523

    Article  CAS  Google Scholar 

  • Demby AH, Chamberlain J, Brown DW, Clegg CS (1994) Early diagnosis of Lassa fever by reverse transcription-PCR. J Clin Microbiol 32:2898–2903

    Article  CAS  Google Scholar 

  • Djavani M, Rodas J, Lukashevich IS, Horejsh D, Pandolfi PP, Borden KL, Salvato MS (2001) Role of the promyelocytic leukemia protein PML in the interferon sensitivity of lymphocytic choriomeningitis virus. J Virol 75:6204–6208

    Article  CAS  Google Scholar 

  • Domingo E (1992) Genetic variation and quasi-species. Curr Opin Genet Dev 2:61–63

    Article  CAS  Google Scholar 

  • Domingo E, Mas A, Yuste E, Pariente N, Sierra S, Gutierrez-Riva M, Menendez-Arias L (2001) Virus population dynamics, fitness variations and the control of viral disease: an update. Prog Drug Res 57:77–115

    CAS  Google Scholar 

  • Domingo E, Martin V, Perales C, Escarmis C (2008) Coxsackieviruses and quasispecies theory: evolution of enteroviruses. Curr Top Microbiol Immunol 323:3–32

    CAS  Google Scholar 

  • Domingo E (2006) Quasispecies: concepts and implications for virology, vol 299. Springer

    Google Scholar 

  • Domingo E (2007) Virus evolution. In: Knipe DM, Holey PM (ed) Fields virology, 5th ed

    Google Scholar 

  • Domingo E, Holland JJ, Ahlquist P (1988) RNA Genetics, vol I, II, III. CRC Press, Boca Ratón

    Google Scholar 

  • Downs WG, Anderson CR, Spence L, Aitken TH, Greenhall AH (1963) Tacaribe virus, a new agent isolated from Artibeus bats and mosquitoes in Trinidad, West Indies. Am J Trop Med Hyg 12:640–646

    Article  CAS  Google Scholar 

  • Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci U S A 96:13910–13913

    Article  CAS  Google Scholar 

  • Duvignaud A, Jaspard M, Etafo IC, Gabillard D, Serra B, Abejegah C, le Gal C, Abidoye AT, Doutchi M, Owhin S, Seri B, Vihundira JK, Bererd-Camara M, Schaeffer J, Danet N, Augier A, Ogbaini-Emovon E, Salam AP, Ahmed LA, Duraffour S, Horby P, Gunther S, Adedosu AN, Ayodeji OO, Anglaret X, Malvy D, LASCOPE Study Group (2021) Lassa fever outcomes and prognostic factors in Nigeria (LASCOPE): a prospective cohort study. Lancet Glob Health 9:e469–e478

    Google Scholar 

  • Ehichioya DU, Hass M, Becker-Ziaja B, Ehimuan J, Asogun DA, Fichet-Calvet E, Kleinsteuber K, Lelke M, ter Meulen J, Akpede GO, Omilabu SA, Gunther S, Olschlager S (2011) Current molecular epidemiology of Lassa virus in Nigeria. J Clin Microbiol 49:1157–1161

    Article  Google Scholar 

  • Ehichioya DU, Dellicour S, Pahlmann M, Rieger T, Oestereich L, Becker-Ziaja B, Cadar D, Ighodalo Y, Olokor T, Omomoh E, Oyakhilome J, Omiunu R, Agbukor J, Ebo B, Aiyepada J, Ebhodaghe P, Osiemi B, Ehikhametalor S, Akhilomen P, Airende M, Esumeh R, Muoebonam E, Giwa R, Ekanem A, Igenegbale G, Odigie G, Okonofua G, Enigbe R, Omonegho Yerumoh E, Pallasch E, Bockholt S, Kafetzopoulou LE, Duraffour S, Okokhere PO, Akpede GO, Okogbenin SA, Odia I, Aire C, Akpede N, Tobin E, Ogbaini-Emovon E, Lemey P, Adomeh DI, Asogun DA, Gunther S (2019) Phylogeography of Lassa virus in Nigeria. J Virol 93

    Google Scholar 

  • Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    Article  CAS  Google Scholar 

  • Eigen M (2002) Error catastrophe and antiviral strategy. Proc Natl Acad Sci U S A 99:13374–13376

    Article  CAS  Google Scholar 

  • Ellenberg P, Edreira M, Scolaro L (2004) Resistance to superinfection of Vero cells persistently infected with Junin virus. Arch Virol 149:507–522

    Article  CAS  Google Scholar 

  • Ellenberg P, Linero FN, Scolaro LA (2007) Superinfection exclusion in BHK-21 cells persistently infected with Junin virus. J Gen Virol 88:2730–2739

    Article  CAS  Google Scholar 

  • Emonet S, Lemasson JJ, Gonzalez JP, de Lamballerie X, Charrel RN (2006) Phylogeny and evolution of old world arenaviruses. Virology 350:251–257

    Article  CAS  Google Scholar 

  • Emonet SF, de la Torre JC, Domingo E, Sevilla N (2009) Arenavirus genetic diversity and its biological implications. Infect Genet Evol 9:417–429

    Article  CAS  Google Scholar 

  • Enria DA, Barrera Oro JG (2002) Junin virus vaccines. Curr Top Microbiol Immunol 263:239–261

    CAS  Google Scholar 

  • Evans CF, Borrow P, de la Torre JC, Oldstone MB (1994) Virus-induced immunosuppression: kinetic analysis of the selection of a mutation associated with viral persistence. J Virol 68:7367–7373

    Article  CAS  Google Scholar 

  • Falzarano D, Feldmann H (2013) Vaccines for viral hemorrhagic fevers–progress and shortcomings. Curr Opin Virol 3:343–351

    Article  CAS  Google Scholar 

  • Fenner F (1976) Classification and nomenclature of viruses. Second report of the International Committee on Taxonomy of Viruses. Intervirology 7:1–115

    Article  CAS  Google Scholar 

  • Fernandes J, Guterres A, de Oliveira RC, Chamberlain J, Lewandowski K, Teixeira BR, Coelho TA, Crisostomo CF, Bonvicino CR, D’Andrea PS, Hewson R, de Lemos ERS (2018) Xapuri virus, a novel mammarenavirus: natural reassortment and increased diversity between New World viruses. Emerg Microbes Infect 7:120

    Article  Google Scholar 

  • Fichet-Calvet E, Rogers DJ (2009) Risk maps of Lassa fever in West Africa. PLoS Negl Trop Dis 3:e388

    Article  Google Scholar 

  • Fischer SA, Graham MB, Kuehnert MJ, Kotton CN, Srinivasan A, Marty FM, Comer JA, Guarner J, Paddock CD, DeMeo DL, Shieh WJ, Erickson BR, Bandy U, DeMaria A Jr, Davis JP, Delmonico FL, Pavlin B, Likos A, Vincent MJ, Sealy TK, Goldsmith CS, Jernigan DB, Rollin PE, Packard MM, Patel M, Rowland C, Helfand RF, Nichol ST, Fishman JA, Ksiazek T, Zaki SR (2006) Transmission of lymphocytic choriomeningitis virus by organ transplantation. N Engl J Med 354:2235–2249

    Article  CAS  Google Scholar 

  • Fisher-Hoch SP, McCormick JB (2004) Lassa fever vaccine. Expert Rev Vaccines 3:189–197

    Article  CAS  Google Scholar 

  • Fisher-Hoch SP, Hutwagner L, Brown B, McCormick JB (2000) Effective vaccine for lassa fever. J Virol 74:6777–6783

    Article  CAS  Google Scholar 

  • Forni D, Pontremoli C, Pozzoli U, Clerici M, Cagliani R, Sironi M (2018) Ancient evolution of mammarenaviruses: adaptation via changes in the L protein and no evidence for host-virus codivergence. Genome Biol Evol 10:863–874

    Article  Google Scholar 

  • Forni D, Sironi M (2020) Population structure of Lassa Mammarenavirus in West Africa. Viruses 12

    Google Scholar 

  • Frame JD, Baldwin JM Jr, Gocke DJ, Troup JM (1970) Lassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings. Am J Trop Med Hyg 19:670–676

    Article  CAS  Google Scholar 

  • Freedman DO, Woodall J (1999) Emerging infectious diseases and risk to the traveler. Med Clin North Am 83(865–83):v

    Google Scholar 

  • Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH (2006) Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med 203:2223–2227

    Article  CAS  Google Scholar 

  • Fulhorst CF, Bowen MD, Ksiazek TG, Rollin PE, Nichol ST, Kosoy MY, Peters CJ (1996) Isolation and characterization of Whitewater Arroyo virus, a novel North American arenavirus. Virology 224:114–120

    Article  CAS  Google Scholar 

  • Fulhorst CF, Bowen MD, Salas RA, Duno G, Utrera A, Ksiazek TG, De Manzione NM, De Miller E, Vasquez C, Peters CJ, Tesh RB (1999) Natural rodent host associations of Guanarito and pirital viruses (Family Arenaviridae) in central Venezuela. Am J Trop Med Hyg 61:325–330

    Article  CAS  Google Scholar 

  • Fulhorst CF, Charrel RN, Weaver SC, Ksiazek TG, Bradley RD, Milazzo ML, Tesh RB, Bowen MD (2001) Geographic distribution and genetic diversity of Whitewater Arroyo virus in the southwestern United States. Emerg Infect Dis 7:403–407

    Article  CAS  Google Scholar 

  • Fulhorst CF, Cajimat MN, Milazzo ML, Paredes H, de Manzione NM, Salas RA, Rollin PE, Ksiazek TG (2008) Genetic diversity between and within the arenavirus species indigenous to western Venezuela. Virology 378:205–213

    Article  CAS  Google Scholar 

  • Garcia JB, Morzunov SP, Levis S, Rowe J, Calderon G, Enria D, Sabattini M, Buchmeier MJ, Bowen MD, St Jeor SC (2000) Genetic diversity of the Junin virus in Argentina: geographic and temporal patterns. Virology 272:127–136

    Article  CAS  Google Scholar 

  • Geisbert TW, Jahrling PB (2004) Exotic emerging viral diseases: progress and challenges. Nat Med 10:S110–S121

    Article  CAS  Google Scholar 

  • Gerlach P, Malet H, Cusack S, Reguera J (2015) Structural insights into bunyavirus replication and its regulation by the vRNA promoter. Cell 161:1267–1279

    Article  CAS  Google Scholar 

  • Gonzalez JR, Armengol L, Sole X, Guino E, Mercader JM, Estivill X, Moreno V (2007) SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23:644–645

    Article  Google Scholar 

  • Gonzalez-Lopez C, Arias A, Pariente N, Gomez-Mariano G, Domingo E (2004) Preextinction viral RNA can interfere with infectivity. J Virol 78:3319–3324

    Article  CAS  Google Scholar 

  • Gowen BB, Juelich TL, Sefing EJ, Brasel T, Smith JK, Zhang L, Tigabu B, Hill TE, Yun T, Pietzsch C, Furuta Y, Freiberg AN (2013) Favipiravir (T-705) inhibits Junin virus infection and reduces mortality in a guinea pig model of Argentine hemorrhagic fever. PLoS Negl Trop Dis 7:e2614

    Article  Google Scholar 

  • Graci JD, Harki DA, Korneeva VS, Edathil JP, Too K, Franco D, Smidansky ED, Paul AV, Peterson BR, Brown DM, Loakes D, Cameron CE (2007) Lethal mutagenesis of poliovirus mediated by a mutagenic pyrimidine analogue. J Virol 81:11256–11266

    Article  CAS  Google Scholar 

  • Grande-Perez A, Sierra S, Castro MG, Domingo E, Lowenstein PR (2002) Molecular indetermination in the transition to error catastrophe: systematic elimination of lymphocytic choriomeningitis virus through mutagenesis does not correlate linearly with large increases in mutant spectrum complexity. Proc Natl Acad Sci U S A 99:12938–12943

    Article  CAS  Google Scholar 

  • Grande-Perez A, Lazaro E, Lowenstein P, Domingo E, Manrubia SC (2005a) Suppression of viral infectivity through lethal defection. Proc Natl Acad Sci U S A 102:4448–4452

    Article  CAS  Google Scholar 

  • Grande-Perez A, Gomez-Mariano G, Lowenstein PR, Domingo E (2005b) Mutagenesis-induced, large fitness variations with an invariant arenavirus consensus genomic nucleotide sequence. J Virol 79:10451–10459

    Article  CAS  Google Scholar 

  • Grange ZL, Goldstein T, Johnson CK, Anthony S, Gilardi K, Daszak P, Olival KJ, O'Rourke T, Murray S, Olson SH, Togami E, Vidal G, Expert P, Consortium P, Mazet JAK, University of Edinburgh Epigroup members those who wish to remain (2021) Ranking the risk of animal-to-human spillover for newly discovered viruses. Proc Natl Acad Sci U S A 118:e2002324118

    Google Scholar 

  • Grant A, Seregin A, Huang C, Kolokoltsova O, Brasier A, Peters C, Paessler S (2012) Junin virus pathogenesis and virus replication. Viruses 4:2317–2339

    Article  CAS  Google Scholar 

  • Gryseels S, Baird SJ, Borremans B, Makundi R, Leirs H, Gouy de Bellocq J (2017) When viruses don’t go viral: the importance of host phylogeographic structure in the spatial spread of arenaviruses. PLoS Pathog 13:e1006073

    Article  Google Scholar 

  • Gunther S, Emmerich P, Laue T, Kuhle O, Asper M, Jung A, Grewing T, ter Meulen J, Schmitz H (2000) Imported lassa fever in Germany: molecular characterization of a new Lassa virus strain. Emerg Infect Dis 6:466–476

    Article  CAS  Google Scholar 

  • Hall JS, French R, Hein GL, Morris TJ, Stenger DC (2001) Three distinct mechanisms facilitate genetic isolation of sympatric wheat streak mosaic virus lineages. Virology 282:230–236

    Article  CAS  Google Scholar 

  • Hallam HJ, Hallam S, Rodriguez SE, Barrett ADT, Beasley DWC, Chua A, Ksiazek TG, Milligan GN, Sathiyamoorthy V, Reece LM (2018) Baseline map** of Lassa fever virology, epidemiology and vaccine research and development. NPJ Vaccines 3:11

    Article  Google Scholar 

  • Happi AN, Happi CT, Schoepp RJ (2019) Lassa fever diagnostics: past, present, and future. Curr Opin Virol 37:132–138

    Article  Google Scholar 

  • Harris KS, Brabant W, Styrchak S, Gall A, Daifuku R (2005) KP-1212/1461, a nucleoside designed for the treatment of HIV by viral mutagenesis. Antiviral Res 67:1–9

    Article  CAS  Google Scholar 

  • Hastie KM, Kimberlin CR, Zandonatti MA, MacRae IJ, Saphire EO (2011) Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3’ to 5’ exonuclease activity essential for immune suppression. Proc Natl Acad Sci U S A 108:2396–2401

    Article  CAS  Google Scholar 

  • Haydon DT, Bastos AD, Knowles NJ, Samuel AR (2001) Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates. Genetics 157:7–15

    Article  CAS  Google Scholar 

  • Hetzel U, Sironen T, Laurinmaki P, Liljeroos L, Patjas A, Henttonen H, Vaheri A, Artelt A, Kipar A, Butcher SJ, Vapalahti O, Hepojoki J (2013) Isolation, identification, and characterization of novel arenaviruses, the etiological agents of boid inclusion body disease. J Virol 87:10918–10935

    Article  CAS  Google Scholar 

  • Hotchin J, Sikora E (1973) Low-pathogenicity variant of lymphocytic choriomeningitis virus. Infect Immun 7:825–826

    Article  CAS  Google Scholar 

  • Irwin NR, Bayerlova M, Missa O, Martinkova N (2012) Complex patterns of host switching in New World arenaviruses. Mol Ecol 21:4137–4150

    Article  Google Scholar 

  • Isaacson M (2001) Viral hemorrhagic fever hazards for travelers in Africa. Clin Infect Dis 33:1707–1712

    Article  CAS  Google Scholar 

  • Jahrling PB (1983) Protection of Lassa virus-infected guinea pigs with Lassa-immune plasma of guinea pig, primate, and human origin. J Med Virol 12:93–102

    Article  CAS  Google Scholar 

  • Jahrling PB, Peters CJ (1992) Lymphocytic choriomeningitis virus. A neglected pathogen of man. Arch Pathol Lab Med 116:486–488

    CAS  Google Scholar 

  • Jay MT, Glaser C, Fulhorst CF (2005) The arenaviruses. J Am Vet Med Assoc 227:904–915

    Article  Google Scholar 

  • Jelcic I, Hotz-Wagenblatt A, Hunziker A, Zur Hausen H, de Villiers EM (2004) Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin’s disease patient: genome reorganization and diversity in the hypervariable region. J Virol 78:7498–7507

    Article  CAS  Google Scholar 

  • Johnson KM (1965) Epidemiology of Machupo virus infection. 3. Significance of virological observations in man and animals. Am J Trop Med Hyg 14:816–818

    Article  CAS  Google Scholar 

  • Johnson KM, Kuns ML, Mackenzie RB, Webb PA, Yunker CE (1966) Isolation of Machupo virus from wild rodent Calomys callosus. Am J Trop Med Hyg 15:103–106

    Article  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  Google Scholar 

  • Jridi C, Martin JF, Marie-Jeanne V, Labonne G, Blanc S (2006) Distinct viral populations differentiate and evolve independently in a single perennial host plant. J Virol 80:2349–2357

    Article  CAS  Google Scholar 

  • Kafetzopoulou LE, Pullan ST, Lemey P, Suchard MA, Ehichioya DU, Pahlmann M, Thielebein A, Hinzmann J, Oestereich L, Wozniak DM, Efthymiadis K, Schachten D, Koenig F, Matjeschk J, Lorenzen S, Lumley S, Ighodalo Y, Adomeh DI, Olokor T, Omomoh E, Omiunu R, Agbukor J, Ebo B, Aiyepada J, Ebhodaghe P, Osiemi B, Ehikhametalor S, Akhilomen P, Airende M, Esumeh R, Muoebonam E, Giwa R, Ekanem A, Igenegbale G, Odigie G, Okonofua G, Enigbe R, Oyakhilome J, Yerumoh EO, Odia I, Aire C, Okonofua M, Atafo R, Tobin E, Asogun D, Akpede N, Okokhere PO, Rafiu MO, Iraoyah KO, Iruolagbe CO et al (2019) Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science 363:74–77

    Article  CAS  Google Scholar 

  • Kai Y, Hikita H, Morishita N, Murai K, Nakabori T, Iio S, Hagiwara H, Imai Y, Tamura S, Tsutsui S, Naito M, Nishiuchi M, Kondo Y, Kato T, Suemizu H, Yamada R, Oze T, Yakushi** T, Hiramatsu N, Sakamori R, Tatsumi T, Takehara T (2017) Baseline quasispecies selection and novel mutations contribute to emerging resistance-associated substitutions in hepatitis C virus after direct-acting antiviral treatment. Sci Rep 7:41660

    Article  CAS  Google Scholar 

  • Kim YJ, Cubitt B, Chen E, Hull MV, Chatterjee AK, Cai Y, Kuhn JH, de la Torre JC (2019) The ReFRAME library as a comprehensive drug repurposing library to identify mammarenavirus inhibitors. Antiviral Res 169:104558

    Article  CAS  Google Scholar 

  • Klavinskis LS, Oldstone MB (1989) Lymphocytic choriomeningitis virus selectively alters differentiated but not housekee** functions: block in expression of growth hormone gene is at the level of transcriptional initiation. Virology 168:232–235

    Article  CAS  Google Scholar 

  • Kranzusch PJ, Whelan SP (2011) Arenavirus Z protein controls viral RNA synthesis by locking a polymerase-promoter complex. Proc Natl Acad Sci U S A 108:19743–19748

    Article  CAS  Google Scholar 

  • Kuhn JH, Adkins S, Agwanda BR, Al Kubrusli R, Alkhovsky SV, Amarasinghe GK, Avsic-Zupanc T, Ayllon MA, Bahl J, Balkema-Buschmann A, Ballinger MJ, Basler CF, Bavari S, Beer M, Bejerman N, Bennett AJ, Bente DA, Bergeron E, Bird BH, Blair CD, Blasdell KR, Blystad DR, Bojko J, Borth WB, Bradfute S, Breyta R, Briese T, Brown PA, Brown JK, Buchholz UJ, Buchmeier MJ, Bukreyev A, Burt F, Buttner C, Calisher CH, Cao M, Casas I, Chandran K, Charrel RN, Cheng Q, Chiaki Y, Chiapello M, Choi IR, Ciuffo M, Clegg JCS, Crozier I, Dal Bo E, de la Torre JC, de Lamballerie X, de Swart RL et al (2021) 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch Virol. https://doi.org/10.1007/s00705-021-05143-6

    Article  Google Scholar 

  • Kunz S, Borrow P, Oldstone MB (2002) Receptor structure, binding, and cell entry of arenaviruses. Curr Top Microbiol Immunol 262:111–137

    CAS  Google Scholar 

  • Kunz S, Edelmann KH, de la Torre JC, Gorney R, Oldstone MB (2003) Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions. Virology 314:168–178

    Article  CAS  Google Scholar 

  • Kunz S, Sevilla N, Rojek JM, Oldstone MB (2004) Use of alternative receptors different than alpha-dystroglycan by selected isolates of lymphocytic choriomeningitis virus. Virology 325:432–445

    Article  CAS  Google Scholar 

  • Kunz S, Rojek JM, Kanagawa M, Spiropoulou CF, Barresi R, Campbell KP, Oldstone MB (2005) Posttranslational modification of alpha-dystroglycan, the cellular receptor for arenaviruses, by the glycosyltransferase LARGE is critical for virus binding. J Virol 79:14282–14296

    Article  CAS  Google Scholar 

  • Lalis A, Leblois R, Lecompte E, Denys C, Ter Meulen J, Wirth T (2012) The impact of human conflict on the genetics of Mastomys natalensis and Lassa virus in West Africa. PLoS ONE 7:e37068

    Article  CAS  Google Scholar 

  • Lalis A, Wirth T (2018) Mice and men: an evolutionary history of Lassa fever. Elsevier Ltd. https://doi.org/10.1016/B978-1-78548-277-9.50011-5

  • Lee AM, Pasquato A, Kunz S (2011) Novel approaches in anti-arenaviral drug development. Virology 411:163–169

    Article  CAS  Google Scholar 

  • Lenz O, ter Meulen J, Klenk HD, Seidah NG, Garten W (2001) The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci U S A 98:12701–12705

    Article  CAS  Google Scholar 

  • Leski TA, Stockelman MG, Moses LM, Park M, Stenger DA, Ansumana R, Bausch DG, Lin B (2015) Sequence variability and geographic distribution of Lassa virus, Sierra Leone. Emerg Infect Dis 21:609–618

    Article  CAS  Google Scholar 

  • Lewicki H, Tishon A, Borrow P, Evans CF, Gairin JE, Hahn KM, Jewell DA, Wilson IA, Oldstone MB (1995) CTL escape viral variants. I. Generation and molecular characterization. Virology 210:29–40

    Article  CAS  Google Scholar 

  • Li K, Lin XD, Wang W, Shi M, Guo WP, Zhang XH, **ng JG, He JR, Wang K, Li MH, Cao JH, Jiang ML, Holmes EC, Zhang YZ (2015) Isolation and characterization of a novel arenavirus harbored by Rodents and Shrews in Zhejiang province, China. Virology 476:37–42

    Article  CAS  Google Scholar 

  • Loytynoja A, Goldman N (2008) Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320:1632–1635

    Article  Google Scholar 

  • Lukashevich IS (1992) Generation of reassortants between African arenaviruses. Virology 188:600–605

    Article  CAS  Google Scholar 

  • Lukashevich IS (2012) Advanced vaccine candidates for Lassa fever. Viruses 4:2514–2557

    Article  Google Scholar 

  • Lukashevich IS, Patterson J, Carrion R, Moshkoff D, Ticer A, Zapata J, Brasky K, Geiger R, Hubbard GB, Bryant J, Salvato MS (2005) A live attenuated vaccine for Lassa fever made by reassortment of Lassa and Mopeia viruses. J Virol 79:13934–13942

    Article  CAS  Google Scholar 

  • Maes P, Alkhovsky SV, Bao Y, Beer M, Birkhead M, Briese T, Buchmeier MJ, Calisher CH, Charrel RN, Choi IR, Clegg CS, de la Torre JC, Delwart E, DeRisi JL, Di Bello PL, Di Serio F, Digiaro M, Dolja VV, Drosten C, Druciarek TZ, Du J, Ebihara H, Elbeaino T, Gergerich RC, Gillis AN, Gonzalez JJ, Haenni AL, Hepojoki J, Hetzel U, Ho T, Hong N, Jain RK, Jansen van Vuren P, ** Q, Jonson MG, Junglen S, Keller KE, Kemp A, Kipar A, Kondov NO, Koonin EV, Kormelink R, Korzyukov Y, Krupovic M, Lambert AJ, Laney AG, LeBreton M, Lukashevich IS, Marklewitz M, Markotter W et al (2018) Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Arch Virol 163:2295–2310

    Article  CAS  Google Scholar 

  • Manning JT, Forrester N, Paessler S (2015) Lassa virus isolates from Mali and the Ivory Coast represent an emerging fifth lineage. Front Microbiol 6:1037

    Article  Google Scholar 

  • Manrubia SC, Domingo E, Lazaro E (2010) Pathways to extinction: beyond the error threshold. Philos Trans R Soc Lond B Biol Sci 365:1943–1952

    Article  Google Scholar 

  • Martin V, Domingo E (2008) Influence of the mutant spectrum in viral evolution: focused selection of antigenic variants in a reconstructed viral quasispecies. Mol Biol Evol 25:1544–1554

    Article  CAS  Google Scholar 

  • Martin V, Abia D, Domingo E, Grande-Perez A (2010) An interfering activity against lymphocytic choriomeningitis virus replication associated with enhanced mutagenesis. J Gen Virol 91:990–1003

    Article  CAS  Google Scholar 

  • Martinez-Sobrido L, Zuniga EI, Rosario D, Garcia-Sastre A, de la Torre JC (2006) Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 80:9192–9199

    Article  CAS  Google Scholar 

  • Martinez-Sobrido L, Giannakas P, Cubitt B, Garcia-Sastre A, de la Torre JC (2007) Differential inhibition of type I interferon induction by arenavirus nucleoproteins. J Virol 81:12696–12703

    Article  CAS  Google Scholar 

  • Martinez-Sobrido L, Emonet S, Giannakas P, Cubitt B, Garcia-Sastre A, de la Torre JC (2009) Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 83:11330–11340

    Article  CAS  Google Scholar 

  • Mas A, Lopez-Galindez C, Cacho I, Gomez J, Martinez MA (2010) Unfinished stories on viral quasispecies and Darwinian views of evolution. J Mol Biol 397:865–877

    Article  CAS  Google Scholar 

  • Matthews RE (1979) Third report of the International Committee on Taxonomy of Viruses. Classification and nomenclature of viruses. Intervirology 12:129–296

    Article  CAS  Google Scholar 

  • Mendenhall M, Russell A, Juelich T, Messina EL, Smee DF, Freiberg AN, Holbrook MR, Furuta Y, de la Torre JC, Nunberg JH, Gowen BB (2011a) T-705 (favipiravir) inhibition of arenavirus replication in cell culture. Antimicrob Agents Chemother 55:782–787

    Article  CAS  Google Scholar 

  • Mendenhall M, Russell A, Smee DF, Hall JO, Skirpstunas R, Furuta Y, Gowen BB (2011b) Effective oral favipiravir (T-705) therapy initiated after the onset of clinical disease in a model of arenavirus hemorrhagic Fever. PLoS Negl Trop Dis 5:e1342

    Article  CAS  Google Scholar 

  • Meyer BJ, Southern PJ (1994) Sequence heterogeneity in the termini of lymphocytic choriomeningitis virus genomic and antigenomic RNAs. J Virol 68:7659–7664

    Article  CAS  Google Scholar 

  • Meyer BJ, de la Torre JC, Southern PJ (2002) Arenaviruses: genomic RNAs, transcription, and replication. Curr Top Microbiol Immunol 262:139–149

    CAS  Google Scholar 

  • Monath TP, Casals J (1975) Diagnosis of Lassa fever and the isolation and management of patients. Bull World Health Organ 52:707–715

    CAS  Google Scholar 

  • Monath TP, Newhouse VF, Kemp GE, Setzer HW, Cacciapuoti A (1974) Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone. Science 185:263–265

    Article  CAS  Google Scholar 

  • Mordecai GJ, Miller KM, Di Cicco E, Schulze AD, Kaukinen KH, Ming TJ, Li S, Tabata A, Teffer A, Patterson DA, Ferguson HW, Suttle CA (2019) Endangered wild salmon infected by newly discovered viruses. Elife 8

    Google Scholar 

  • Moreno H, Gallego I, Sevilla N, de la Torre JC, Domingo E, Martin V (2011) Ribavirin can be mutagenic for arenaviruses. J Virol 85:7246–7255

    Article  CAS  Google Scholar 

  • Moreno H, Tejero H, de la Torre JC, Domingo E, Martin V (2012a) Mutagenesis-mediated virus extinction: virus-dependent effect of viral load on sensitivity to lethal defection. PLoS ONE 7:e32550

    Article  CAS  Google Scholar 

  • Moreno H, Grande-Perez A, Domingo E, Martin V (2012b) Arenaviruses and lethal mutagenesis. Prospects for new ribavirin-based interventions. Viruses 4:2786–2805

    Article  CAS  Google Scholar 

  • Morimoto K, Hooper DC, Carbaugh H, Fu ZF, Koprowski H, Dietzschold B (1998) Rabies virus quasispecies: implications for pathogenesis. Proc Natl Acad Sci U S A 95:3152–3156

    Article  CAS  Google Scholar 

  • Morin B, Coutard B, Lelke M, Ferron F, Kerber R, Jamal S, Frangeul A, Baronti C, Charrel R, de Lamballerie X, Vonrhein C, Lescar J, Bricogne G, Gunther S, Canard B (2010) The N-terminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription. PLoS Pathog 6:e1001038

    Article  Google Scholar 

  • Moshkoff DA, Salvato MS, Lukashevich IS (2007) Molecular characterization of a reassortant virus derived from Lassa and Mopeia viruses. Virus Genes 34:169–176

    Article  CAS  Google Scholar 

  • Muller G, Bruns M, Martinez Peralta L, Lehmann-Grube F (1983) Lymphocytic choriomeningitis virus. IV. Electron microscopic investigation of the virion. Arch Virol 75:229–242

    Article  CAS  Google Scholar 

  • Murphy FA, Webb PA, Johnson KM, Whitfield SG (1969) Morphological comparison of Machupo with lymphocytic choriomeningitis virus: basis for a new taxonomic group. J Virol 4:535–541

    Article  CAS  Google Scholar 

  • Nd N, Berthet N, Rougeron V, Mangombi JB, Durand P, Maganga GD, Bouchier C, Schneider BS, Fair J, Renaud F, Leroy EM (2015) Evidence of lymphocytic choriomeningitis virus (LCMV) in domestic mice in Gabon: risk of emergence of LCMV encephalitis in Central Africa. J Virol 89:1456–1460

    Article  Google Scholar 

  • Nikisins S, Rieger T, Patel P, Muller R, Gunther S, Niedrig M (2015) International external quality assessment study for molecular detection of Lassa virus. PLoS Negl Trop Dis 9:e0003793

    Article  Google Scholar 

  • Novella IS, Duarte EA, Elena SF, Moya A, Domingo E, Holland JJ (1995) Exponential increases of RNA virus fitness during large population transmissions. Proc Natl Acad Sci U S A 92:5841–5844

    Article  CAS  Google Scholar 

  • Okokhere P, Colubri A, Azubike C, Iruolagbe C, Osazuwa O, Tabrizi S, Chin E, Asad S, Ediale E, Rafiu M, Adomeh D, Odia I, Atafo R, Aire C, Okogbenin S, Pahlman M, Becker-Ziaja B, Asogun D, Fradet T, Fry B, Schaffner SF, Happi C, Akpede G, Gunther S, Sabeti PC (2018) Clinical and laboratory predictors of Lassa fever outcome in a dedicated treatment facility in Nigeria: a retrospective, observational cohort study. Lancet Infect Dis 18:684–695

    Article  Google Scholar 

  • Olayemi A, Obadare A, Oyeyiola A, Igbokwe J, Fasogbon A, Igbahenah F, Ortsega D, Asogun D, Umeh P, Vakkai I, Abejegah C, Pahlman M, Becker-Ziaja B, Gunther S, Fichet-Calvet E (2016) Arenavirus diversity and phylogeography of mastomys natalensis rodents, Nigeria. Emerg Infect Dis 22:694–697

    Article  CAS  Google Scholar 

  • Oldstone MB, Campbell KP (2010) Decoding arenavirus pathogenesis: essential roles for alpha-dystroglycan-virus interactions and the immune response. Virology 411:170–179

    Article  Google Scholar 

  • Oldstone MB, Rodriguez M, Daughaday WH, Lampert PW (1984) Viral perturbation of endocrine function: disordered cell function leads to disturbed homeostasis and disease. Nature 307:278–281

    Article  CAS  Google Scholar 

  • Oldstone MB, Ahmed R, Buchmeier MJ, Blount P, Tishon A (1985) Perturbation of differentiated functions during viral infection in vivo. I. Relationship of lymphocytic choriomeningitis virus and host strains to growth hormone deficiency. Virology 142:158–174

    Article  CAS  Google Scholar 

  • Oldstone MB (2002) Biology and pathogenesis of lymphocytic choriomeningitis virus infection. In: Oldstone MB (ed) Arenaviruses, vol 263, pp 83–118

    Google Scholar 

  • Olschlager S, Lelke M, Emmerich P, Panning M, Drosten C, Hass M, Asogun D, Ehichioya D, Omilabu S, Gunther S (2010) Improved detection of Lassa virus by reverse transcription-PCR targeting the 5’ region of S RNA. J Clin Microbiol 48:2009–2013

    Article  Google Scholar 

  • Onyuok SO, Hu B, Li B, Fan Y, Kering K, Ochola GO, Zheng XS, Obanda V, Ommeh S, Yang XL, Agwanda B, Shi ZL (2019) Molecular detection and genetic characterization of novel RNA viruses in wild and synanthropic rodents and shrews in Kenya. Front Microbiol 10:2696

    Article  Google Scholar 

  • Ortega-Prieto AM, Sheldon J, Grande-Perez A, Tejero H, Gregori J, Quer J, Esteban JI, Domingo E, Perales C (2013) Extinction of hepatitis C virus by ribavirin in hepatoma cells involves lethal mutagenesis. PLoS ONE 8:e71039

    Article  CAS  Google Scholar 

  • Palacios G, Druce J, Du L, Tran T, Birch C, Briese T, Conlan S, Quan PL, Hui J, Marshall J, Simons JF, Egholm M, Paddock CD, Shieh WJ, Goldsmith CS, Zaki SR, Catton M, Lipkin WI (2008) A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med 358:991–998

    Article  CAS  Google Scholar 

  • Parker WB (2005) Metabolism and antiviral activity of ribavirin. Virus Res 107:165–171

    Article  CAS  Google Scholar 

  • Parodi AS, Rugiero HR, Frigerio M, de la Barrera JM, Mettler N et al (1958) Concerning the epidemic outbreak in Junin. Dia Med 30:2300–2301

    Google Scholar 

  • Parodi AS, Rugiero HR, Greenway DJ, Mettler N, Martinez A, Boxaca M et al (1959) Isolation of the Junin virus (epidemic hemorrhagic fever) from the mites of the epidemic area (Echinolaelaps echidninus, Barlese). Prensa Med Argent 46:2242–2244

    Google Scholar 

  • Pasqual G, Rojek JM, Masin M, Chatton JY, Kunz S (2011) Old world arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport. PLoS Pathog 7:e1002232

    Article  CAS  Google Scholar 

  • Peng R, Xu X, **g J, Wang M, Peng Q, Liu S, Wu Y, Bao X, Wang P, Qi J, Gao GF, Shi Y (2020) Structural insight into arenavirus replication machinery. Nature 579:615–619

    Article  CAS  Google Scholar 

  • Perales C, Martin V, Ruiz-Jarabo CM, Domingo E (2005) Monitoring sequence space as a test for the target of selection in viruses. J Mol Biol 345:451–459

    Article  CAS  Google Scholar 

  • Perales C, Mateo R, Mateu MG, Domingo E (2007) Insights into RNA virus mutant spectrum and lethal mutagenesis events: replicative interference and complementation by multiple point mutants. J Mol Biol 369:985–1000

    Article  CAS  Google Scholar 

  • Perales C, Agudo R, Tejero H, Manrubia SC, Domingo E (2009) Potential benefits of sequential inhibitor-mutagen treatments of RNA virus infections. PLoS Pathog 5:e1000658

    Article  Google Scholar 

  • Perales C, Iranzo J, Manrubia SC, Domingo E (2012) The impact of quasispecies dynamics on the use of therapeutics. Trends Microbiol 20:595–603

    Article  CAS  Google Scholar 

  • Perez M, Craven RC, de la Torre JC (2003) The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci U S A 100:12978–12983

    Article  CAS  Google Scholar 

  • Perez M, Greenwald DL, de la Torre JC (2004) Myristoylation of the RING finger Z protein is essential for arenavirus budding. J Virol 78:11443–11448

    Article  CAS  Google Scholar 

  • Peters CJ (2002) Human infection with arenaviruses in the Americas. In: Oldstone MB (ed) Arenaviruses I, vol 262. Springer, Berlin Heidelberg, pp 65–74

    Chapter  Google Scholar 

  • Peters CJ (2006) Lymphocytic choriomeningitis virus–an old enemy up to new tricks. N Engl J Med 354:2208–2211

    Article  CAS  Google Scholar 

  • Pfeiffer JK, Kirkegaard K (2005) Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS Pathog 1:e11

    Article  Google Scholar 

  • Pflug A, Guilligay D, Reich S, Cusack S (2014) Structure of influenza a polymerase bound to the viral RNA promoter. Nature 516:355–360

    Article  CAS  Google Scholar 

  • Pinschewer DD, Perez M, Sanchez AB, de la Torre JC (2003) Recombinant lymphocytic choriomeningitis virus expressing vesicular stomatitis virus glycoprotein. Proc Natl Acad Sci U S A 100:7895–7900

    Article  CAS  Google Scholar 

  • Pinschewer DD, Perez M, de la Torre JC (2005) Dual role of the lymphocytic choriomeningitis virus intergenic region in transcription termination and virus propagation. J Virol 79:4519–4526

    Article  CAS  Google Scholar 

  • Pircher H, Moskophidis D, Rohrer U, Burki K, Hengartner H, Zinkernagel RM (1990) Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature 346:629–633

    Article  CAS  Google Scholar 

  • Poch O, Sauvaget I, Delarue M, Tordo N (1989) Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8:3867–3874

    Article  CAS  Google Scholar 

  • Pontremoli C, Forni D, Sironi M (2019) Arenavirus genomics: novel insights into viral diversity, origin, and evolution. Curr Opin Virol 34:18–28

    Article  CAS  Google Scholar 

  • Prince GA, Ottolini MG, Moscona A (2001) Contribution of the human parainfluenza virus type 3 HN-receptor interaction to pathogenesis in vivo. J Virol 75:12446–12451

    Article  CAS  Google Scholar 

  • Pulkkinen AJ, Pfau CJ (1970) Plaque size heterogeneity: a genetic trait of lymphocytic choriomeningitis virus. Appl Microbiol 20:123–128

    Article  CAS  Google Scholar 

  • Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M (2019) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18:41–58

    Article  CAS  Google Scholar 

  • Qi X, Lan S, Wang W, Schelde LM, Dong H, Wallat GD, Ly H, Liang Y, Dong C (2010) Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature 468:779–783

    Article  CAS  Google Scholar 

  • Radoshitzky SR, Bao Y, Buchmeier MJ, Charrel RN, Clawson AN, Clegg CS, DeRisi JL, Emonet S, Gonzalez JP, Kuhn JH, Lukashevich IS, Peters CJ, Romanowski V, Salvato MS, Stenglein MD, de la Torre JC (2015) Past, present, and future of arenavirus taxonomy. Arch Virol 160:1851–1874

    Article  CAS  Google Scholar 

  • Riviere Y (1987) Map** arenavirus genes causing virulence. Curr Top Microbiol Immunol 133:59–65

    CAS  Google Scholar 

  • Riviere Y, Oldstone MB (1986) Genetic reassortants of lymphocytic choriomeningitis virus: unexpected disease and mechanism of pathogenesis. J Virol 59:363–368

    Article  CAS  Google Scholar 

  • Riviere Y, Ahmed R, Oldstone MB (1986) The use of lymphocytic choriomeningitis virus reassortants to map viral genes causing virulence. Med Microbiol Immunol 175:191–192

    Article  CAS  Google Scholar 

  • Rojek JM, Kunz S (2008) Cell entry by human pathogenic arenaviruses. Cell Microbiol 10:828–835

    Article  CAS  Google Scholar 

  • Rojek JM, Perez M, Kunz S (2008a) Cellular entry of lymphocytic choriomeningitis virus. J Virol 82:1505–1517

    Article  CAS  Google Scholar 

  • Rojek JM, Sanchez AB, Thao NN, de la Torre JC, Kunz S (2008b) Different mechanisms of cell entry by human pathogenic Old World and New World arenaviruses. J Virol

    Google Scholar 

  • Ruiz-Jarabo CM, Ly C, Domingo E, de la Torre JC (2003) Lethal mutagenesis of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). Virology 308:37–47

    Article  CAS  Google Scholar 

  • Russo IR, Sole CL, Barbato M, von Bramann U, Bruford MW (2016) Landscape determinants of fine-scale genetic structure of a small rodent in a heterogeneous landscape (Hluhluwe-iMfolozi Park, South Africa). Sci Rep 6:29168

    Article  CAS  Google Scholar 

  • Safronetz D, Rosenke K, Westover JB, Martellaro C, Okumura A, Furuta Y, Geisbert J, Saturday G, Komeno T, Geisbert TW, Feldmann H, Gowen BB (2015) The broad-spectrum antiviral favipiravir protects guinea pigs from lethal Lassa virus infection post-disease onset. Sci Rep 5:14775

    Article  CAS  Google Scholar 

  • Sakabe S, Hartnett JN, Ngo N, Goba A, Momoh M, Sandi JD, Kanneh L, Cubitt B, Garcia SD, Ware BC, Kotliar D, Robles-Sikisaka R, Gangavarapu K, Branco LM, Eromon P, Odia I, Ogbaini-Emovon E, Folarin O, Okogbenin S, Okokhere PO, Happi C, Sabeti PC, Andersen KG, Garry RF, de la Torre JC, Grant DS, Schieffelin JS, Oldstone MBA, Sullivan BM (2020) Identification of common CD8(+) T cell epitopes from Lassa fever survivors in Nigeria and Sierra Leone. J Virol 94

    Google Scholar 

  • Salu OB, James AB, Bankole HS, Agbla JM, Da Silva M, Gbaguidi F, Loko CF, Omilabu SA (2019) Molecular confirmation and phylogeny of Lassa fever virus in Benin Republic 2014–2016. Afr J Lab Med 8:803

    Article  Google Scholar 

  • Sanjuan R, Codoner FM, Moya A, Elena SF (2004) Natural selection and the organ-specific differentiation of HIV-1 V3 hypervariable region. Evolution 58:1185–1194

    CAS  Google Scholar 

  • Sanz-Ramos M, Rodriguez-Calvo T, Sevilla N (2012) Mutagenesis-mediated decrease of pathogenicity as a feature of the mutant spectrum of a viral population. PLoS ONE 7:e39941

    Article  CAS  Google Scholar 

  • Saunders AA, Ting JP, Meisner J, Neuman BW, Perez M, de la Torre JC, Buchmeier MJ (2007) Map** the landscape of the lymphocytic choriomeningitis virus stable signal peptide reveals novel functional domains. J Virol 81:5649–5657

    Article  CAS  Google Scholar 

  • Scott TFRT (1936) Meningitis in man caused by a filterable virus: I. Two cases and the method of obtaining a virus from their spinal fluids. J Exp Med 69:397–414

    Article  Google Scholar 

  • Sevilla N, Kunz S, Holz A, Lewicki H, Homann D, Yamada H, Campbell KP, de La Torre JC, Oldstone MB (2000) Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J Exp Med 192:1249–1260

    Article  CAS  Google Scholar 

  • Sevilla N, Domingo E, de la Torre JC (2002) Contribution of LCMV towards deciphering biology of quasispecies in vivo. Curr Top Microbiol Immunol 263:197–220

    CAS  Google Scholar 

  • Sevilla N, de la Torre JC (2006) Arenavirus diversity and evolution: quasispecies in vivo. In Domingo E (ed) Quasispecies: concepts and implications for virology, vol 299, pp 315–335

    Google Scholar 

  • Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX, Qin XC, Li J, Cao JP, Eden JS, Buchmann J, Wang W, Xu J, Holmes EC, Zhang YZ (2016) Redefining the invertebrate RNA virosphere. Nature 540:539–543

    Article  CAS  Google Scholar 

  • Siddle KJ, Eromon P, Barnes KG, Mehta S, Oguzie JU, Odia I, Schaffner SF, Winnicki SM, Shah RR, Qu J, Wohl S, Brehio P, Iruolagbe C, Aiyepada J, Uyigue E, Akhilomen P, Okonofua G, Ye S, Kayode T, Ajogbasile F, Uwanibe J, Gaye A, Momoh M, Chak B, Kotliar D, Carter A, Gladden-Young A, Freije CA, Omoregie O, Osiemi B, Muoebonam EB, Airende M, Enigbe R, Ebo B, Nosamiefan I, Oluniyi P, Nekoui M, Ogbaini-Emovon E, Garry RF, Andersen KG, Park DJ, Yozwiak NL, Akpede G, Ihekweazu C, Tomori O, Okogbenin S, Folarin OA, Okokhere PO, MacInnis BL, Sabeti PC et al (2018) Genomic analysis of Lassa virus during an increase in cases in Nigeria in 2018. N Engl J Med 379:1745–1753

    Article  CAS  Google Scholar 

  • Sogoba N, Feldmann H, Safronetz D (2012) Lassa fever in West Africa: evidence for an expanded region of endemicity. Zoonoses Public Health 59(Suppl 2):43–47

    Article  Google Scholar 

  • Speir RW, Wood O, Liebhaber H, Buckley SM (1970) Lassa fever, a new virus disease of man from West Africa. IV. Electron microscopy of Vero cell cultures infected with Lassa virus. Am J Trop Med Hyg 19:692–694

    Article  CAS  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  Google Scholar 

  • Stenglein MD, Sanders C, Kistler AL, Ruby JG, Franco JY, Reavill DR, Dunker F, Derisi JL (2012) Identification, characterization, and in vitro culture of highly divergent arenaviruses from boa constrictors and annulated tree boas: candidate etiological agents for snake inclusion body disease. Mbio 3:e00180-e212

    Article  CAS  Google Scholar 

  • Stenglein MD, Jacobson ER, Chang LW, Sanders C, Hawkins MG, Guzman DS, Drazenovich T, Dunker F, Kamaka EK, Fisher D, Reavill DR, Meola LF, Levens G, DeRisi JL (2015) Widespread recombination, reassortment, and transmission of unbalanced compound viral genotypes in natural arenavirus infections. PLoS Pathog 11:e1004900

    Article  Google Scholar 

  • Strecker T, Eichler R, Meulen J, Weissenhorn W, Dieter Klenk H, Garten W, Lenz O (2003) Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles [corrected]. J Virol 77:10700–10705

    Article  CAS  Google Scholar 

  • Strecker T, Maisa A, Daffis S, Eichler R, Lenz O, Garten W (2006) The role of myristoylation in the membrane association of the Lassa virus matrix protein Z. Virol J 3:93

    Article  Google Scholar 

  • Sullivan BM, Emonet SF, Welch MJ, Lee AM, Campbell KP, de la Torre JC, Oldstone MB (2011) Point mutation in the glycoprotein of lymphocytic choriomeningitis virus is necessary for receptor binding, dendritic cell infection, and long-term persistence. Proc Natl Acad Sci U S A 108:2969–2974

    Article  CAS  Google Scholar 

  • Teng MN, Borrow P, Oldstone MB, de la Torre JC (1996) A single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with the ability to cause growth hormone deficiency syndrome. J Virol 70:8438–8443

    Article  CAS  Google Scholar 

  • Tishon A, Eddleston M, de la Torre JC, Oldstone MB (1993) Cytotoxic T lymphocytes cleanse viral gene products from individually infected neurons and lymphocytes in mice persistently infected with lymphocytic choriomeningitis virus. Virology 197:463–467

    Article  CAS  Google Scholar 

  • Tortorici MA, Albarino CG, Posik DM, Ghiringhelli PD, Lozano ME, Rivera Pomar R, Romanowski V (2001) Arenavirus nucleocapsid protein displays a transcriptional antitermination activity in vivo. Virus Res 73:41–55

    Article  CAS  Google Scholar 

  • Trappier SG, Conaty AL, Farrar BB, Auperin DD, McCormick JB, Fisher-Hoch SP (1993) Evaluation of the polymerase chain reaction for diagnosis of Lassa virus infection. Am J Trop Med Hyg 49:214–221

    Article  CAS  Google Scholar 

  • Traub EA (1935) Filterable virus recovered from white mice. Science 298–299

    Google Scholar 

  • Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, Bessette B, Boulassel MR, Delwart E, Sepulveda H, Balderas RS, Routy JP, Haddad EK, Sekaly RP (2006) Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med 12:1198–1202

    Article  CAS  Google Scholar 

  • Trivedi P, Meyer KK, Streblow DN, Preuninger BL, Schultz KT, Pauza CD (1994) Selective amplification of simian immunodeficiency virus genotypes after intrarectal inoculation of rhesus monkeys. J Virol 68:7649–7653

    Article  CAS  Google Scholar 

  • Urata S, Noda T, Kawaoka Y, Yokosawa H, Yasuda J (2006) Cellular factors required for Lassa virus budding. J Virol 80:4191–4195

    Article  CAS  Google Scholar 

  • Valsamakis A, Riviere Y, Oldstone MB (1987) Perturbation of differentiated functions in vivo during persistent viral infection. III. Decreased growth hormone mRNA. Virology 156:214–220

    Article  CAS  Google Scholar 

  • Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439:344–348

    Article  CAS  Google Scholar 

  • Vilibic-Cavlek T, Savic V, Ferenc T, Mrzljak A, Barbic L, Bogdanic M, Stevanovic V, Tabain I, Ferencak I, Zidovec-Lepej S (2021) Lymphocytic choriomeningitis-emerging trends of a neglected virus: a narrative review. Trop Med Infect Dis 6

    Google Scholar 

  • Volpon L, Osborne MJ, Capul AA, de la Torre JC, Borden KL (2010) Structural characterization of the Z RING-eIF4E complex reveals a distinct mode of control for eIF4E. Proc Natl Acad Sci U S A 107:5441–5446

    Article  CAS  Google Scholar 

  • Wang J, Yang X, Liu H, Wang L, Zhou J, Han X, Zhu Y, Yang W, Pan H, Zhang Y, Shi Z (2019) Prevalence of Wenzhou virus in small mammals in Yunnan Province. China. Plos Negl Trop Dis 13:e0007049

    Article  CAS  Google Scholar 

  • Wang N, Yang L, Li G, Zhang X, Shao J, Ma J, Chen S, Liu Q (2021) Molecular detection and genetic characterization of Wenzhou virus in rodents in Guangzhou, China. BMC Vet Res 17:301

    Article  CAS  Google Scholar 

  • Wauquier N, Petitdemange C, Tarantino N, Maucourant C, Coomber M, Lungay V, Bangura J, Debre P, Vieillard V (2019) HLA-C-restricted viral epitopes are associated with an escape mechanism from KIR2DL2(+) NK cells in Lassa virus infection. EBioMedicine 40:605–613

    Article  Google Scholar 

  • Weaver SC, Salas RA, de Manzione N, Fulhorst CF, Duno G, Utrera A, Mills JN, Ksiazek TG, Tovar D, Tesh RB (2000) Guanarito virus (Arenaviridae) isolates from endemic and outlying localities in Venezuela: sequence comparisons among and within strains isolated from Venezuelan hemorrhagic fever patients and rodents. Virology 266:189–195

    Article  CAS  Google Scholar 

  • Weaver SC, Salas RA, de Manzione N, Fulhorst CF, Travasos da Rosa AP, Duno G, Utrera A, Mills JN, Ksiazek TG, Tovar D, Guzman H, Kang W, Tesh RB (2001) Extreme genetic diversity among Pirital virus (Arenaviridae) isolates from western Venezuela. Virology 285:110–118

    Article  CAS  Google Scholar 

  • Whitmer SLTS, Daniel C, Hans-Peter D, Kelly F, Ketan P, Shelley MB, William GD, John DK, Pierre ER, Jonas S-C, Elisabeth F-C, Bernd N, Petra E, Toni R, Svenja W, Sarah Katharina F, Markus E, Jan Philipp M, Tilman S, Torsten H, William A, Kofi B, Juliana Naa Dedei A, Bruce R, Jay BV, Aneesh KM, Lyon GM, Gerrit K, De Philipp L, Gundolf S, Christoph S, Ulrike W, Jochen WUF, Matthias K, Colleen SK, Timo W, Stuart TN, Stephan B, Ute S, Stephan G (2018) New lineage of Lassa virus, Togo, 2016. Emerging Infectious Disease 24:599

    Article  Google Scholar 

  • Wiley MR, Fakoli L, Letizia AG, Welch SR, Ladner JT, Prieto K, Reyes D, Espy N, Chitty JA, Pratt CB, Di Paola N, Taweh F, Williams D, Saindon J, Davis WG, Patel K, Holland M, Negron D, Stroher U, Nichol ST, Sozhamannan S, Rollin PE, Dogba J, Nyenswah T, Bolay F, Albarino CG, Fallah M, Palacios G (2019) Lassa virus circulating in Liberia: a retrospective genomic characterisation. Lancet Infect Dis 19:1371–1378

    Article  CAS  Google Scholar 

  • Wolff H, Lange JV, Webb PA (1978) Interrelationships among arenaviruses measured by indirect immunofluorescence. Intervirology 9:344–350

    Article  CAS  Google Scholar 

  • Wright CF, Morelli MJ, Thebaud G, Knowles NJ, Herzyk P, Paton DJ, Haydon DT, King DP (2011) Beyond the consensus: dissecting within-host viral population diversity of foot-and-mouth disease virus by using next-generation genome sequencing. J Virol 85:2266–2275

    Article  CAS  Google Scholar 

  • Wu Z, Du J, Lu L, Yang L, Dong J, Sun L, Zhu Y, Liu Q, ** Q (2018a) Detection of Hantaviruses and Arenaviruzses in three-toed jerboas from the Inner Mongolia Autonomous Region, China. Emerg Microbes Infect 7:35

    Article  CAS  Google Scholar 

  • Wu Z, Lu L, Du J, Yang L, Ren X, Liu B, Jiang J, Yang J, Dong J, Sun L, Zhu Y, Li Y, Zheng D, Zhang C, Su H, Zheng Y, Zhou H, Zhu G, Li H, Chmura A, Yang F, Daszak P, Wang J, Liu Q, ** Q (2018b) Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases. Microbiome 6:178

    Article  Google Scholar 

  • Wu-Hsieh B, Howard DH, Ahmed R (1988) Virus-induced immunosuppression: a murine model of susceptibility to opportunistic infection. J Infect Dis 158:232–235

    Article  CAS  Google Scholar 

  • Yadouleton A, Agolinou A, Kourouma F, Saizonou R, Pahlmann M, Bedie SK, Bankole H, Becker-Ziaja B, Gbaguidi F, Thielebein A, Magassouba N, Duraffour S, Baptiste JP, Gunther S, Fichet-Calvet E (2019) Lassa virus in pygmy mice, benin, 2016–2017. Emerg Infect Dis 25:1977–1979

    Article  Google Scholar 

  • York J, Nunberg JH (2006) Role of the stable signal peptide of Junin arenavirus envelope glycoprotein in pH-dependent membrane fusion. J Virol 80:7775–7780

    Article  CAS  Google Scholar 

  • York J, Nunberg JH (2007) Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein. Virology 359:72–81

    Article  CAS  Google Scholar 

  • York J, Romanowski V, Lu M, Nunberg JH (2004) The signal peptide of the Junin arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1–G2 complex. J Virol 78:10783–10792

    Article  CAS  Google Scholar 

  • Young PR, Howard CR (1983) Fine structure analysis of Pichinde virus nucleocapsids. J Gen Virol 64(Pt 4):833–842

    Article  Google Scholar 

  • Zapata JC, Salvato MS (2013) Arenavirus variations due to host-specific adaptation. Viruses 5:241–278

    Article  CAS  Google Scholar 

  • Zinkernagel RM (2002) Lymphocytic choriomeningitis virus and immunology. Curr Top Microbiol Immunol 263:1–5

    CAS  Google Scholar 

Download references

Acknowledgements

M.S. acknowledges support from the Italian Ministry of Health (‘Ricerca Corrente 2019–2020’); D.F. acknowledges support from the Italian Ministry of Health (‘Ricerca Corrente 2018–2020’). JCT was supported by NIH/NIAID grants AI125626 and AI128556. This is the manuscript # XXX from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. de la Torre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sironi, M., Forni, D., de la Torre, J.C. (2023). Mammarenavirus Genetic Diversity and Its Biological Implications. In: Domingo, E., Schuster, P., Elena, S.F., Perales, C. (eds) Viral Fitness and Evolution. Current Topics in Microbiology and Immunology, vol 439. Springer, Cham. https://doi.org/10.1007/978-3-031-15640-3_8

Download citation

Publish with us

Policies and ethics

Navigation